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Abstract

Digital watermarking is the process of introducing small modifications into a copy of
a digital document that can be detected later. The embedded information can be used to
determine the document’s owner or simply to distinguish several copies. However, coin-
cidental or malicious “attacks” can degrade the robustness of watermark detection. Here,
uniform scalar quantization of watermarked documents is investigated theoretically, ex-
tending results from theory of dithered quantization, and experimentally. The watermark is
embedded by an independent additive pseudo-noise sequence. The statistical distribution
of the quantization errors depending on the statistics of the host signal and the watermark is
used to determine the robustness of watermark detection via correlation. Experiments with
JPEG compression of an image with a DCT-domain additive watermark demonstrate the
usefulness of the presented theory.

Mit Einbettung von digitalen Wasserzeichen bezeichnet man den Prozeß zum Einbringen
kleiner Veränderungen in eine Kopie eines digitalen Dokumentes, welche sp¨ater detektiert
werden können. Die eingebettete Information kann benutzt werden, um den Besitzer des
Dokumentes zu bestimmen oder einfach um verschiedene Kopien zu unterscheiden. Allerd-
ings können zufällige oder b¨oswillige Angriffe die Robustheit der Wasserzeichendetek-
tion reduzieren. Hier wird die gleichm¨aßige skalare Quantisierung von mit Wasserzeichen
versehenen Dokumenten theoretisch und experimentell untersucht. Die theoretische Un-
tersuchung basiert auf der Erweiterung der Theorie zur geditherten Quantisierung. Das
Wasserzeichen wird mittels einer unabh¨angigen additiven Pseudo-Rauschsequenz einge-
bettet. Die statistische Verteilung des Quantisierungsfehlers in Abh¨angigkeit von den statis-
tischen Eigenschaften des Originalsignals und des Wasserzeichens wird zur Bestimmung
der Robustheit der Wasserzeichendetektion mittels Korrelation herangezogen. Experimente
mit JPEG Kompression eines Bildes mit im DCT-Bereich eingebetteten additiven Wasserze-
ichen demonstrieren die N¨utzlichkeit der vorgestellten Theorie.
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1 Introduction

The digital representation of audio, image and video signals has become very pop-
ular in the last decade. The success of the digital technology is mainly due to the
possibility of efficient transmission and copying. However, unauthorized copying is
also simplified. One approach to combat this problem is to mark a digital document
such that a copyright can be proven or the distribution path be traced. The marking
process produces a perceptually equivalent digital document rather than a bit-exact
copy.

For a general watermarking scheme, the embedding process can be described by

~sk = ~x+ ~wk; (1)

where~x denotes the original signal,~wk the signal modification introduced by the
watermarking process, and~sk the published signal (watermarked document).~x is
also called “host signal” or “private document”. In the remainder of this article,
signals are denoted by vectors (e.g.,~x), thenth signal sample byx[n], and random
variables by boldface (e.g.,x). The indexk is used to distinguish between different
watermarks.

Note that (1) can describe a general watermarking scheme since we define the wa-
termark to be the difference between the host signal~x and the published signal~s,
which is possible in all watermarking schemes where the signal size is not changed
in the embedding process. This does not necessarily mean that (1) is a very useful
definition in all cases, e.g., for embedding schemes based on geometrical deforma-
tions. Here, we consider watermark embedding by the simple addition of a pseudo-
noise sequence~wk which is statistically independent from the host signal~x and
from other possible watermarks. That is,~wi and ~wj, with j 6= i, are independent
of each other. In this case, other watermarks than the one to be detected appear as
additive noise. Thus, the watermark indexk is neglected in the remainder. It is well
known that the watermark power should be adapted to the host signal to ensure
imperceptibility of the watermark. We propose in [1] to separate the host signal
into sub-signals such that the allowed watermark power and maximal strength of
the attack is constant within one sub-signal. From the point of view of watermark
transmission each sub-signal forms one sub-channel. If the detection performance
for each sub-channel is known, the outputs of all sub-channels can be combined
for maximally robust detection. In this paper we focus on analyzing the detection
performance for one sub-channel, thus, a stationary watermark~w is assumed. The
concept of sub-channels is considered again in Section 5.

The watermark detector in general receives a signal

~r = ~s+ ~e = ~x + ~w + ~e; (2)
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where~e can include any distortion that might be introduced by the watermark chan-
nel. (2) can describe a general attack, however, as with (1) this formulation is not
very useful in some cases, e.g., desynchronization attacks. (2) is applicable in case
of quantization or denoising attacks, but statistical dependencies between~e, ~w and
~x must be considered.

Depending on the system architecture encapsulating the watermarking scheme the
host signal may or may not be available to the watermark detector. There are
schemes where the private signal is provided by some trusted third party, but in
other cases, e.g., in copy-protection for Digital Versatile Discs (DVD), watermark
detection must be possible without reference to the private document~x. Costa [2]
and Moulin and O’Sullivan [3] show that for Gaussian signals under certain linear-
ity assumptions that allow an information-theoretic analysis watermarking schemes
that do not provide the host signal~x at the detector can perform exactly as well as
schemes where~x is not available at the detector. Chen and Wornell [4] point out that
for AWGN attacks the watermark capacity is independent of the host signal statis-
tics. However, when the detector has no access to the host signal, the embedding
process must be adapted appropriately. Practical schemes based on this philosophy
are described in [4–7]. In this paper, we consider only watermark embedding by
an independent additive sequence~w, thus, the discussed scheme cannot be optimal
when the host signal is not available to the watermark detector. In the following
discussion, the interference from the private signal~x is reduced by subtracting~x,
weighted by a factor
x, from the received signal~r. The detection process is per-
formed using the pre-processed signal

~y = ~r � 
x~x: (3)

When~x is available to the watermark detector,
x is chosen such that the correlation
between the host signal~x and the pre-processed received signal~y is completely
removed. In all other cases, host signal interference reduction methods, e.g., host
signal estimation, should be implemented. We do not specify such methods in this
paper since several additional concepts are necessary to describe these schemes.
However, the effect of host signal reduction is roughly reflected in our analysis by
the weighted subtraction of~x, where
x will be smaller for less effective reduction
methods and
x = 0 when no reduction is implemented. We denote the detection
case with
x = 0 as “blind detection”.

The complete characterization of the watermark channel – equivalent to the de-
scription of~e – is still an open problem. In contrast to many other communications
problems, the channel distortion~e might be introduced intentionally to remove or
hide the transmitted information; the watermark is attacked. The range of possible
attacks is constrained by the maximum allowed document distortion. The water-
mark need not be detectable from a worthless document. However, this bound is
difficult to describe exactly due to the subjective quality rating for natural data. In
addition, this distortion bound is also important for the watermark embedding, since
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the watermark must not degrade the document quality either. Correct modeling of
the worst-case channel is crucial for the proper design of watermarks.

The most common approach for verifying watermark robustness is to investigate
experimentallythe detection performance in the presence of a certain watermark
channel. In [8–12], image watermark detection after JPEG compression is inves-
tigated. Blurring, image rotation, scaling and cropping are other frequently used
attacks [8,10,13]. Kutter and Petitcolas [11] present a benchmark test for image
watermarking schemes based on performance tests for many different attacks. Ex-
perimental investigations of image watermark robustness should follow the pro-
posed scheme to make results comparable.

Experimental verifications allow a comparison between different schemes, where
even subjective quality ratings can be considered. However, these experiments give
little information about possible improvements of an investigated scheme, and state-
ments about the maximum robustness can hardly be made. Therefore, a theoretical
investigation of the watermark channel is important.

Theoretical investigations of watermark detection are given in [14,9,15–17]. Most
of the presented results are valid when the channel distortion can be approximated
by independent additive white Gaussian noise (AWGN). We will analyze the effects
of uniform scalar quantization, as it is often used in lossy compression schemes.In
general, the distortion introduced by quantization cannot be modeled appropriately
by AWGN.In the case of correlation detection, which is investigated in this paper,
a significant reduction of watermark correlation has to be considered. This will be
shown in Section 4.

Our analysis of watermark detection after quantization attacks is based on a correla-
tion detector, where the decision boundary can be adapted to the channel character-
istics. This detector is described in Section 2. In order to describe the robustness of
watermark detection after quantization, we need an analytical expression for the de-
pendencies between the watermarked signal~s and the quantized watermarked sig-
nal~r. This can be found when considering additive watermark embedding followed
by quantization asdithered quantization. In Section 3 the fundamentals of dithered
quantization are briefly reviewed, and the theory of dithered quantizers is extended
as necessary for our purpose. In Section 4 the results are applied to investigate theo-
retically watermark detection using correlation measurements after uniform scalar
quantization. The detection performance for host signals and watermark signals
with different distributions is compared, where the quantizer step size� is varied.
In Section 5, an example image watermarking scheme is presented. The detection
performance for watermark components after JPEG compression is measured ex-
perimentally and also predicted using the theory described in Section 4. Section 6
concludes the presented investigation of watermark robustness in the presence of
quantization attacks.
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2 Watermark Detection

Signal detection has been analyzed extensively by communication engineers. Here,
we only summarize the aspects that are important for watermark detection. We
assume that the watermark detector is always synchronized. At the first glance this
assumption seems very restrictive. However, as shown in [18,19], it is possible to
counterattack many desynchronization attacks when using an improved detector or
applying some re-synchronization prior to the watermark detection.

2.1 Bayes’ Hypothesis Test

The watermark detection problem can be stated as a simple-hypothesis test, with
the hypotheses

H0 : the watermark~w is not present,

H1 : the watermark~w is present.

The task of hypothesis testing is to decide for a pre-processed received document
~y, which of the hypotheses is true. Usually, it is not possible to separate all water-
marked and un-watermarked documents perfectly. We have to trade off the proba-
bility pFP of acceptingH1 whenH0 is true (false positive) and the probabilitypFN
of acceptingH0 whenH1 is true (false negative). Bayes’ solution is the decision
rule

H1 :
py (~yjH1)

py (~yjH0)
> K =

(cost false positive)� pH0
(cost false negative)� pH1

; (4)

whereK is a constant depending on the a priori probabilities forH1 andH0 and the
cost connected with the different decision errors [20]. The costs for false positive
and false negative errors are introduced to weight the severity of false positive and
false negative errors depending on the actual application. ForK = 1, the decision
rule (4) forms amaximum-likelihood (ML) detector . For equal a priori proba-
bilities, the overall detection error probability ispe = 1

2
(pFP + pFN). Receiver op-

erating characteristic (ROC) graphs, as proposed in [11], can be computed using
different thresholdsK.

The probability density functions (PDFs)py (~yjH1) andpy (~yjH0) must be known
for the implementation of (4). Therefore, statistical models are used to design the
optimal decision rule and to estimate the corresponding error probabilities. Two
such models are described in the following sub-sections.
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2.2 AWGN Channel

A simple approach is to model the channel distortion by additive white Gaussian
noise (AWGN). For watermark applications, this implies that the original signalx

and the channel distortione are jointly Gaussian random processes and statistically
independent from a possibly included watermark. The AWGN channel can be an-
alyzed completely by the detection performance for one watermark realization~w.
Here,py (~yjH1) andpy (~yjH0) are Gaussian PDFs with equal variance but different
means, and the test (4) becomes a common correlation detector [21]:

H1 : C =
(~r � 
x~x)

T ~w

jj~wjj2 =
~yT ~w

jj~wjj2 >
1

2
+

�2o logK

jj~wjj2 ; (5)

where�2o denotes the variance of the AWGN. The corresponding decision errors
for K = 1 are depicted in Fig. 1 (a). The solution is similar for non-white signals
when pre-filtering is applied.
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Fig. 1. (a) Correlation detection for an AWGN channel.E fyjH0g=0; E fyjH1g=1;
�2o = VarfyjH0g = VarfyjH1g = 0:32; K = 1. (b) Correlation detection for
signal dependent channel distortion.E fyjH0g=0; E fyjH1g=0.8; VarfyjH0g = 0:32;
VarfyjH1g = 0:42; K = 1.
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2.3 Signal Dependent Channel Distortion

The quantization channel, as discussed in Section 3 and Section 4, introduces dis-
tortions that depend in general on the quantizer input. Due to this dependency,this
channel can only be described by its average behavior for all possible watermarks,
so the watermark should be viewed as a random variable, too. The pre-processed
received signal is dependent on the given hypothesis:

H0 : ~y=(1� 
x)~x+ ~eH0 (6)
H1 : ~y=(1� 
x)~x+ ~eH1 + ~w: (7)

Here, a correlation detector need not be optimal in general. The derivation of the
correlation detector starting from a hypothesis test, as shown in [21], is only valid
for independent AWGN. Nevertheless, the correlation between the pre-processed
received signal~y and the watermark~w can be used as a similarity measurement.
Correlation detection is known to be a good candidate when accurate statistical
models for the channel distortion are not available [17]. To describe the correlation
detector, we define the sample-wise product

c[n] = y[n]w[n]=�2w; (8)

where�2w denotes the variance of the watermark. In the remainder of this article,
we assume~c to be ergodic and model the elementsc[n] by a random variablec.
The expectationE fcg is equal to the normalized correlation of the watermark with
the pre-processed received signal (E fcg = E

n
~yT ~w

o
=M�2w), and thus indicates

whether the watermark is embedded or not. For finite length signals, we estimate
this expectation via

E fcg � C =
1

M

MX
n=1

c[n]; (9)

whereM is the number of samples considered for the estimate.y andw may be
non-Gaussian, but they describe IID random processes. Thus, we can apply the
central limit theorem, and for sufficiently largeM , this estimate can be modeled by
a Gaussian random variableC with variance [22]

VarfCg = 1

M
Varfcg : (10)

AssumingC to be Gaussian, we can implement (4). We expectE fcjH0g = 0.
The valuesE fcjH1g, VarfcjH1g and VarfcjH0g are dependent on the watermark
channel. Based on these parameters, the optimal decision rule is
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H1 : K <
(2� VarfcjH1g =M)�

1

2 exp
�
� (C�EfcjH1g)2

2 VarfcjH1g=M

�

(2� VarfcjH0g =M)�
1

2 exp
�
� (C�0)2

2 VarfcjH0g=M

� (11)

or equivalently

H1 : 2
E fcjH1gC
VarfcjH1g +

 
1

VarfcjH0g �
1

VarfcjH1g

!
C2

>
1

M

 
2 log(K)� log

VarfcjH0g
VarfcjH1g

!
+

E fcjH1g2
VarfcjH1g : (12)

In Fig. 1 (b), the corresponding detection situation is depicted forK = 1. Besides
the unequal variances VarfcjH1g and VarfcjH0g, the decrease ofE fcjH1g com-
pared to the AWGN case is shown. For equal variances Varfcg = VarfcjH1g =
VarfcjH0g, the quadratic term in (12) vanishes and the rule simplifies to

H1 : C >
E fcjH1g

2
+

Varfcg log(K)

ME fcjH1g ; (13)

which is very similar to (5). The important difference is that (13) is dependent on
E fcjH1g. When using (13) withK = 1, the detection error probabilitiespFP and
pFN are equal and can be computed with

pFP = pFN =
1

2
erfc

0
@pM E fcjH1g

2
q
2Varfcg

1
A (14)

where erfc(x) = 2p
�

1R
x
exp(��2) d�: Due to the Gaussian model forC, pFP and

pFN can be computed similarly for detection schemes using (12) and forK 6= 1.
Note that the performance of the described detection method can be characterized
completely byE fcjH1g, VarfcjH1g and VarfcjH0g.

2.4 Improved Detection for Known Signal and Channel Statistics

In the previous subsection the correlation detection is motivated as a robust detec-
tion method when little is known about the statistics of the detection interference.
Particular when detecting without knowing the host signal~x, knowledge about the
statistics of the host signal can be exploited for improved blind detection. In Sec-
tion 5, we introduce the generalized Gaussian model which can describe the statis-
tics of DCT coefficients of images very accurately. Hernandez [17] derives a blind
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detection rule for host signals with a generalized Gaussian PDF which differs sig-
nificantly from a correlation measurement. Such a detection will be very useful for
blind detection after weak quantization attacks where the host signal interference
dominates the quantization noise. However, for coarse quantization the statistical
model must be adapted, which is not straightforward. In addition the analysis of
quantization effects presented in this paper is not sufficient to describe theoreti-
cally the performance of such detection after quantization attacks. For this reason
only correlation detection is considered in the remainder. Extending the robustness
analysis to improved detectors, e.g., the one described in [17], might be a topic
for future research. However, most probably it is more useful to analyze schemes
where the host signal interference is already suppressed by a proper embedding
process [3–7]. The results for blind detection, presented in this paper, can serve as
a lower bound on the achievable detection performance. For detection with original
the correlation detection is a good choice anyway, since an accurate modeling of
all possible attacks might be difficult in general.

3 Dithered Quantization

In Section 4, we will show that quantization of a watermarked document can be
considered as dithered quantization of the original signal. This point of view en-
ables the theoretical analysis of the robustness of watermark correlation detection
after quantization attacks. Due to the central importance of dithered quantizers for
our analysis, we briefly review the fundamentals of dithered quantization before ex-
tending the theory to aspects important for watermarking schemes. Previous work
on dithered uniform scalar quantizers can be found, for instance, in [23–25].

3.1 Fundamentals of Dithered Quantization

A dithered quantizer is a quantizer that adds a dither sequence~d to the input sig-
nal ~x before discretizing the samples. There are two kinds of dithered quantizers,
the subtractive dithered quantizer as depicted in Fig. 2, and the non-subtractive
dithered quantizer. Non-subtractive dithered quantizers become important, when
the receiver of the digital data has no synchronized access to the dither sequence.
However, the distortion introduced by a subtractive dithered quantizer is lower,
which can be seen easily from the expressions for the quantization error:

subtractive dithered quantizer: ~e = ~z � ~x = ~z � ~z (15)

non-subtractive dithered quantizer: ~� = ~z � ~x = ~e + ~d; (16)
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where~z denotes the output of the non-subtractive dithered quantizer, and~z denotes
the output of the subtractive dithered quantizer.

x[n]

d[n] d[n]

z[n] z[n] z[n]
Q

PP

Fig. 2. Subtractive dithered quantizer

3.1.1 Previous Results

The investigation of dithered quantizers was mainly motivated by the goal of ob-
taining quantization errors independent from the original signal. This is important
for extending the analysis of fine quantization to coarse quantization, independent
from the signal to be quantized, or to achieve improved subjective quantization
quality. In watermarking schemes that embed additive signals~w, the watermark~w
can be considered as a dither signal~d. Thus, we are interested in the correlation be-
tween the quantized signal~z and the dither signal~d dependent on the characteristics
of the input signal~x and the dither~d.

It is assumed that~x and~d are independent identically distributed (IID) signals, thus
their samplesx[n] andd[n] can be modeled by the random variablesx andd. The
characteristic function of the quantizer inputz can be expressed by the product of
the characteristic functions ofd andx

Mz (ju) = Mx (ju)Md (ju) ; (17)

since the quantizer inputz is derived by the summation of two independent random
variablesd andx. We recall the definition of the characteristic function

My (ju) = E
n
ejuy

o
=

1Z
�1

py (y) e
juy dy = Fpy(y) (�u) ; (18)

whereFv (!) denotes the Fourier transform of a functionv.

Schuchman [25] derived the condition

Md

 
j
2�b

�

!
= 0; b 2 Z; b 6= 0; (19)

which is necessary and sufficient to achieve a subtractive quantization errore that is
independent from the quantizer inputx, and an IID sequence uniformly distributed
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on (��=2;�=2]. Gray and Stockham [23] showed that the condition

dk

duk
(Md (ju)Mv (ju))

�����
u=2�b=�

= 0; b 2 Z; b 6= 0; (20)

wherev is a random variable uniformly distributed on(��=2;�=2] and indepen-
dent ofd, is necessary and sufficient for thekth moment of the non-subtractive
quantization error� not to depend onx. Note thatv by itself has no special mean-
ing, and is only introduced to formulate the condition (20). Both results are valid for
uniform scalar quantizers with step size�, where overload does not occur. Schuch-
man’s condition (19) is especially important for the analysis of quantization attacks
against additive watermarks, as shown in Section 4.

3.1.2 Characteristic Function of the Quantization Errore

The PDF of the quantization error of a uniform quantizer, having a representative
value at 0, can be expressed by the sum of the PDFs of the quantization errors
occurring in each bin.

pe (e)= rect
�
e

�

�
| {z }

extracting the
central interval

�
1X

b=�1
pz (b�� e) ;

| {z }
mirroring around 0 and
periodic repetition

(21)

where rect (e)=

8><
>:
1; jej < 0:5;

0; jej � 0:5:
(22)

This description of the PDF of the quantization error can be transformed straight-
forwardly into an expression for the characteristic function of the error

Me (ju) =
1X

b=�1
Mz

 
j
2�b

�

!
si
�
�

2
(u+ 2�b=�)

�
: (23)

The moments of a random variabley can be found from subsequent derivatives of
its characteristic functionMy (ju),

E
n
yk
o
= j�k

dk

duk
My (ju)

�����
u=0

; (24)

leading to
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E feg= j�1
1X

b=�1
Mz

 
j
2�b

�

!
d

du
si
�
�

2
(u+ 2�b=�)

������
u=0

=�j
1X

b=�1
b6=0

Mz

 
j
2�b

�

!
(�1)b
2�b=�

(25)

E
n
e2
o
=
�2

12
+

1X
b=�1
b6=0

Mz

 
j
2�b

�

!
(�1)b

2(�b=�)2
: (26)

Schuchman’s condition for obtaining a quantization errore that is statistically in-
dependent from the inputx can be verified by (23) and (17). If (19) is fulfilled, the
valuesMz

�
j 2�b

�

�
for b 6= 0 are zero, no matter what the characteristic function of

the input signalMx (ju) is.

3.2 Dependence between the Ditherd and the Errore

In Section 4 the performance of a watermark decoder after signal quantization is
expressed in terms of the expectationsE fe2g, E fewg, E few3g andE fexw2g.
In this section, expressions for these terms dependent on the characteristics of the
watermarkw and the host signalx are presented. The calculations are an extension
of the theory of dithered scalar quantizers, thus the generality of these results will
be emphasized by using the notationd instead ofw.

3.2.1 Notation and Normalization

First of all, some notations and normalizations are introduced. This is necessary
to keep the formulas relatively small and to make results easier to compare. The
integral

M (k)
x (ju) =

1Z
�1

xk px (x) e
jux dx (27)

equals thek-th derivative of the characteristic function, except for a complex factor.
For convenience the PDFs of the involved random variables are normalized by their
standard deviation, thus we define

p~x (x)= �x px (�xx) (28)

M
(k)
~x (ju)=

1

�kx
M (k)

x (ju=�x) : (29)
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Normalized parameters for the standard deviation of the dither signal and the input
signal are defined as

� =
�d
�

(30)

�=
�x
�
: (31)

Applying this notation to (26) and normalizing by�2=12, the variance of the quan-
tization noise for fine uniform scalar quantizers, yields

E fe2g
�2=12

= 1 + 12
1X
b=1

(�1)b
�2b2

M~x (j2�b�)M~d
(j2�b�) : (32)

3.2.2 Signal Dependencies

Using the conditional characteristic function of the quantizer input

Mz j d=d (ju)=
1Z

�1
pz (z j z = x+ d;d = d) ejuz dz

=Mx (ju) e
jud (33)

and (25) an expression for the correlation between the quantization errore and the
ditherd can be derived:

E fejd = dg=�j
1X

b=�1
b6=0

(�1)b
2�b=�

Mx

 
j
2�b

�

!
ej

2�b

�
d (34)

E fedg=
1Z

�1
d E fejd = dg pd (d) dd

=�j
1X

b=�1
b6=0

(�1)b
2�b=�

Mx

 
j
2�b

�

! 1Z
�1

d pd (d) e
j 2�b
�

d dd

=�j
1X

b=�1
b6=0

(�1)b
2�b=�

Mx

 
j
2�b

�

!
M

(1)
d

 
j
2�b

�

!
: (35)

Thus, the cross-correlationE fedg is dependent on the characteristic functions of
the random variablesx andd and the quantizer step size�. Assuming that the
mean-free dither signal has an even symmetric PDF, the well-known symmetries
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of Fourier transforms of real functions can be exploited. Thus, the summation over
negativeb’s can be eliminated. After normalizing, we obtain

E fedg
�2d

=
1X
b=1

(�1)b
�b�

M~x (j2�b�) Im
n
M

(1)
~d

(j2�b�)
o
: (36)

For the characterization of the quantization channel, some higher-order statistics
and signal dependencies must be evaluated. Since the calculation is always similar
to the presented derivation of (36), we summarize here only the resulting equations:

E fexg
�2x

=
1X
b=1

(�1)b
�b�

Im
n
M

(1)
~x (j2�b�)

o
M~d

(j2�b�) (37)

E fed3g
�4d

=
1X
b=1

(�1)b
�b�

M~x (j2�b�) Im
n
M

(3)
~d

(j2�b�)
o

(38)

E fe2d2g
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(�1)b
�b�

Im
n
M

(1)
~x (j2�b�)

o
M

(2)
~d

(j2�b�) : (40)

The given formulas have been verified for different signal models. Several examples
will be presented in Section 4 and Section 5. For the dither signald a uniform, a
Gaussian and a bipolar1 distribution are considered. Models for the input signalx

are Gaussian, Laplacian or generalized Gaussian random variables. Except for the
generalized Gaussian variable, the PDFs and the required characteristic functions
are summarized in Appendix A.

4 Detection Robustness after Quantization

4.1 The Quantization Channel

In this section, the effects of subsequent uniform scalar quantization on the detec-
tion robustness of an additively embedded watermark will be analyzed. The de-
tection performance depends on the quantizer step size� and on the statistical
properties of the watermark~w and the host signal~x. The considered scheme is de-
picted in Fig. 3. Considering only the quantization attack, the channel distortion~e
is equal to the quantization errore[n] = r[n]� s[n].

1 d 2 f��d; �dg, where both signs are equi-probable
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Fig. 3. Additive watermark embedding and quantization attack

Characterizing the quantization channel means describing the dependency between
the received quantized signal~r, the original signal~x, and the watermark~w. We
assume that the watermark~w and the host signal~x are independent. The sam-
ples of both signals are independent identically distributed (IID), and drawn from
wide-sense stationary random processes denoted by the random variablesw andx.
For convenience, we again use the normalized standard deviations� = �x=� and
� = �w=�. The watermark-to-host-document ratio (WDR), defined byWDR =
20 log10(�=�) = 20 log10(�w=�x) determines the amplitude of the watermarks.
SmallWDRs correspond to a high perceptual quality since in this case the host
document is not distorted very much by the watermarking process.

4.2 Infinite Length Watermarks

Using the correlation detection principle presented in Section 2, the detection ro-
bustness can be determined whenE fcjH1g, VarfcjH1g and VarfcjH0g are known.
For the scheme depicted in Fig. 3, the normalized conditional expectationE fcjH1g
is given by

E fcjH1g
�2w

=
E f(r� 
xx)wg

�2w
=

E f(e+w + (1� 
x)x)wg
�2w

=
E fewg
�2w

+ 1; (41)

where the received signalr was replaced using (2). Further, the independence ofw

andx was exploited, and we assumedE fwg = 0. In the ideal case we would like
to obtainE fcjH1g =�2w = 1, i.e., the correlationE fewg between the quantization
errore and the watermarkw should be zero.

According to (10), the influence of the variances VarfcjH1g and VarfcjH0g on the
detection robustness decreases for an increasing correlation lengthM . Therefore,
it is possible to describe the detection of infinite length watermarks completely by
the expectationE fcjH1g given in (41). Whether or notE fewg is zero, depends on
the PDFs of the original signalx and the watermarkw and their strength relative
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to the quantizer step size�. This can be deduced from (36), when substituting the
ditherd by the watermarkw.

Schuchman’s condition (19) is necessary and sufficient to make the input signal
x and the quantization errore independent. Since this solution is symmetric with
respect to the original and the dither signal we obtain the condition

Mx

 
j
2�b

�

!
= 0; b 2 Z; b 6= 0 (42)

on the characteristic function of the input signal to achieveE fewg = 0 for any
watermark. (42) is fulfilled when the PDF ofx can be expressed by the convolution
of the PDF of any random variable with a uniform distribution on(��=2;�=2].
This condition is approximately fulfilled for PDFs which are almost constant over
the range of one quantization bin, which is typically achieved by fine quantization.

In conjunction with signal transforms and coarse quantization, as typical for lossy
compression systems, the distribution of the input signal often does not fulfill (42).
Therefore, we evaluated (41) using (36) for different assumptions about the input
signal, the watermark (dither), and the quantizer step size. We are mainly inter-
ested in the robustness of a specific additive watermark against differently coarse
quantization. Thus (41) must be evaluated for a constantWDR, describing the em-
bedding strength, and increasing quantizer step size�, which equals in this context
a decreasing value of�, the normalized standard deviation of the host document.

Fig. 4 and Fig. 5 show the cross-correlationE fywg of the watermarkw and the
pre-processed received signaly, where the curves are computed using (36). We
consider Gaussian and Laplacian host signalsx with zero mean and unit variance.
The watermark distribution is either Gaussian, uniform or bipolar (w[n] = ��w).
All three types of signals are frequently used in watermarking schemes. Results for
WDR = �16:59dB andWDR = �6:02dB are presented. The cross-correlation
E fywg is plotted over varying values of� in the upper plots of Fig. 4 and Fig. 5.
These plots show the quantization effects dependent on the quantizer step size. In
the lower plots, the cross-correlationE fywg is plotted over the host-document-to-
noise ratio (DNR), defined byDNR = 10 log10(�

2
x=Varfx� rg) and denoting the

distortion between the attacked documentr and the unwatermarked original docu-
mentx. In contrast to the upper plots, the curves in the lower plots are additionally
influenced by the dependence of the quantization noise power on the PDF of the
signal. Fig. 5 shows that it is possible to obtain even negativeDNR-values. This
effect occurs since theDNR includes the distortion introduced by the watermark.

For fixedWDR and varying�, the cross-correlationE fywg becomes one for suffi-
ciently large� (fine quantization) and converges towards zero in the limit as�! 0.
The behavior ofE fywg for large� is intuitively clear, since in this case the host
signal has an approximately constant PDF over the range of a step size�, and thus
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Fig. 4. Cross-correlationE fywg =�2w for WDR = �16:59dB.

(42) is approximately fulfilled. At the limit� ! 0 the quantizer step size� be-
comes arbitrarily large, which leads to a zero quantizer output, assuming zero is a
representation value, and thus to the quantization errore[n] = �x[n] � w[n]. As
a result, the normalized expectationE fewg =�2w converges to�1, and the condi-
tional expectationE fcjH1g becomes zero.

Let us now compare the results for different watermark distributions. We observe
that the characteristic of the watermark PDF does not have a significant influence
for WDR = �16:59dB (low power embedding). However, for largerWDRs,
as shown in Fig. 5, a Gaussian watermark provides a somewhat better robust-
ness against quantization. For instance, for a Laplacian distributed host signal and
WDR = �6:02dB, the quality after a quantization attack that reduces the nor-
malized cross-correlationE fywg =�2w to 0:8 is about 1dB higher for a bipolar
distributed watermark compared to a Gaussian watermark. Thus, the bipolar dis-
tributed watermark can be erased more easily by quantization.

The shape of the host signal distribution is much more important than the water-
mark distribution. The upper plots in Fig. 4 and Fig. 5 show that in most cases a
greater cross-correlationE fywg is preserved for lower values of� in the case of a
Gaussian distributed host signal. Only for very coarse quantization (very small�),
the Laplacian distributed host offers better robustness against quantization. How-
ever, the quantizer step size� does not directly indicate the quality of the attacked
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Fig. 5. Cross-correlationE fywg =�2w for WDR = �6:02dB.

document. From the lower plots in Fig. 4 and Fig. 5, where the cross-correlation is
plotted over theDNR, we conclude that the watermark with a Gaussian distributed
host resists quantization more strongly than an equivalent watermark in a Laplacian
distributed host for all qualities of the attacked document. In the case of a Gaus-
sian distributed host,E fywg drops to zero at much lowerDNRs. In general, we
observe that with more peaky PDFs, everything else being equal, the watermark is
somewhat less robust against quantization attacks. This becomes important in Sec-
tion 5 when the watermarking of natural image data is investigated. Further, due to
the strong dependency of the cross-correlationE fywg on the quantization strength
for peaky host document PDFs, it is not possible to model the quantization channel
by an AWGN channel.

4.3 Robustness of Finite Length Watermarks

In the previous sub-section, the expectationE fcjH1g was investigated, since this
term describes completely the robustness of infinite length watermarks. However,
in practice we have finite-length signals, where the detection performance depends
strongly on the variances VarfcjH1g and VarfcjH0g. In addition, the availability
of the original document to the watermark detector becomes an important factor for
the watermark robustness. The detection robustness can always be improved by an
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increased correlation lengthM . In the following comparisons the correlation length
is set toM = 10000, which gives realistic error probabilities, particularly for the
worst case (blind detection).

4.3.1 Analytic Expressions for VarfcjH1g and VarfcjH0g

The formulas for the variances VarfcjH1g and VarfcjH0g are slightly more com-
plicated than those forE fcjH1g. Nevertheless, they can be derived similarly as
(41). In the case of hypothesisH1 the received signalr must be replaced by (2).
For hypothesisH0, two formulas are derived. (44) is valid when considering the
received signalr = x + e. This means the watermark test is conducted for a doc-
ument that is not watermarked at all. However, it could happen that an embedded
watermarkw1 with E fw1wg = 0 exists. Under the assumption that the watermark
w1 has the same distribution – including the variance – as the tested watermarkw,
(45) is valid. (45) can be obtained by settingr = x+e+w1 for the received signal.
The attack in the casesH0 andH�

0 is equal to the quantization attack in case ofH1.
Usually, we cannot expect that the input signal has zero mean. This is considered
in (43), (44) and (45) by the termE fxg.

H1 :
Varf(r� 
xx)wg

�4w
=
E fe2w2g

�4w
+ 2

E few3g
�4w

+
E fw4g
�4w

+ 2(1� 
x)
E fexw2g

�4w
�
 
E fewg
�2w

+ 1

!2

+ (1� 
x)
2

 
�2

�2
+

E fxg2
�2w

!
(43)

H0 :
Varf(r� 
xx)wg

�4w
=

1

12�2
E fe2g
�2=12

+ 2(1� 
x)
�2

�2
E fexg
�2x

+ (1� 
x)
2

 
�2

�2
+

E fxg2
�2w

!
(44)

H�
0 :

Varf(r� 
xx)wg
�4w

=1 +
1

12�2
E fe2g
�2=12

+ 2(1� 
x)
�2

�2
E fexg
�2x

+ 2
E fewg
�2w

+ (1� 
x)
2

 
�2

�2
+

E fxg2
�2w

!
: (45)

These equations show that the variances VarfcjH1g and VarfcjH0g are not exactly
equal. Later we will see whether this difference is important in practical applica-
tions.

As mentioned in Section 1, blind detection denotes the case of
x = 0. When the
originalx is known, the optimal weight, removing all the interference fromx, can
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be determined by the correlation of the received signalr with the original signalx:


x =
E frxg
�2x

=
E fexg
�2x

+
E fxg2
�2x

+ 1: (46)

4.3.2 Discussion of the Results

In the following discussion, theWDR is fixed to�16:59dB. In Section 4.2 it is
shown that for smallWDR the watermark distribution has no significant influence
on E fcjH1g. Similar results are obtained for VarfcjH1g and VarfcjH0g. There-
fore, we will present only results for a Gaussian watermark. For the hypothesisH0,
a completely unmarked document is assumed, thus (44) has to be used to compute
VarfcjH0g.
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Fig. 6. Standard deviations
p

Varfywg=�2w for WDR = �16:59dB.

Fig. 6 shows the normalized standard deviation
q

Varfywg=�2w for Laplacian and
Gaussian input sequences over the quantization strength denoted by�. Detection
with original and blind detection is considered. The values for both hypotheses
H0 andH1 are displayed in one plot. We observe that the standard deviations for
small� and the same input characteristic are almost identical forH0 andH1. This
is no longer true for large� (fine quantization), as can easily be seen in the case
of detection with original. The same effect exists also for blind detection, but it is
less prominent due to the large interference from the original signal. The variances
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for large� can be estimated by assuming that the quantization errore becomes
statistically independent from the quantizer input signal (Schuchman’s condition is
approximately fulfilled). Especially when detecting with the original, the equations
for the variances simplify considerably, to

H1 :
Varf(r� 
xx)wg

�4w
=

1

12�2
+

E fw4g
�4w

� 1 (47)

H0 :
Varf(r� 
xx)wg

�4w
=

1

12�2
(48)

H�
0 :

Varf(r� 
xx)wg
�4w

=
1

12�2
+ 1 (49)

The first equation reveals that the choice of the watermark distribution becomes
important for large values of�. For instance, the kurtosisE fw4g =�4w is 1 for a
bipolar watermark and 3 for a Gaussian watermark. Since for fine quantization the
correlation meanE fcjH1g is not affected, here bipolar watermarks are superior to
Gaussian watermarks. Note that for coarse quantization the opposite is true, due to
the decreasing cross-correlationE fywg.

Another effect visible in Fig. 6 is the larger standard deviation STDfywg for
Laplacian input when small� are considered. On the other hand, for intermedi-
ate quantizer step sizes the Gaussian input leads to a larger standard deviation and
for fine quantization (large�) the distribution of the input signal does not play a
significant role. Further, it can be seen that for coarse quantization the standard
deviations do not depend much on the availability of the original. In this case the
quantization noise dominates the distortion.

4.3.3 Error Probabilities after Quantization Attacks

Finally, the detection error probabilities can be computed fromE fcjH1g, VarfcjH1g
and VarfcjH0g, as described in Section 2. Fig. 7 shows the error probabilities that
occur after quantization attacks for the same parameter settings as in Fig. 6. Sig-
nificant differences are observed for Laplacian and Gaussian input signals. Mainly
due to the faster decay ofE fcjH1g for Laplacian signals, these kind of host signals
provide less robustness for watermarking than Gaussian signals. For instance, error
probabilities about10�5 for blind detection in the case of a Laplacian host signal
can be achieved via quantization introducing 3dB lower distortion than for Gaus-
sian host signals. This effect is even stronger for PDFs that are more peaky than
the Laplacian PDF (see also Section 5). Further, we observe that detection with
the original is hardly affected by fine quantization. The given plot is truncated at
pe = 10�30. In the case of blind detection the achievable error rate is limited by the
interference from the host signal.
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Fig. 7. Error probabilities forWDR = �16:59dB.

5 Robustness of Additive Image Watermarks to JPEG Compression

The theoretical analysis presented in the previous section shows that quantization
can remove at least parts of an embedded additive watermark. This effect is de-
pendent on the distribution of the host signal~x, the watermark signal~w and the
quantization step size�. The results presented so far are simply parameterized by
� and�, describing the watermark’s and input signal’s standard deviation relative
to the quantizer step size�. However, we do not know yet which settings for�
and� are likely to appear in a practical environment. More insight can be gained
by an example watermarking scheme. Further, the experiments can show how ac-
curate the statistical model for the host data must be to achieve a sufficiently good
prediction of the expected detection error probability after quantization attacks.

5.1 Host Data

The theoretical analysis has been carried out without specifying the data to be wa-
termarked, so the results can be applied to many different signals. The following
experimental investigations are for natural images. The watermark is embedded
into the coefficients of an8 � 8 block-DCT of the luminance component. Many
different domains for the watermark embedding process have been proposed in re-
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cent publications, where besides the DCT domain, wavelet domains are very pop-
ular [9,11,26,27,16]. We choose the blockwise DCT transform since it is also used
within the popular JPEG compression scheme.

For JPEG compression, the coefficients of the8� 8 block-DCT are quantized with
a uniform scalar quantizer, as treated in the presented theory. The coefficients of the
8 � 8 block-DCT are almost uncorrelated. For common images, the dependencies
between coefficients of the same frequency from different blocks are low. These
dependencies are small enough that the coefficients can be approximately described
as IID host signals, which was assumed in the presented theory.

5.2 Embedding Scheme

8� 8 blocks

original image watermarked image

JPEG quality

QFe = 1; : : : ; 100

pseudo-noise

generator

JPEG

DCT IDCT

quantization
table

quantizer
scalar

�wi

�i

~xi

~wi

I(u; v;m) ~I(u; v;m)

~si�

Fig. 8. Additive watermarking of DCT-coefficients

Fig. 8 depicts the scheme for the signal dependent additive watermark embedding.
The signal decomposition is closely related to JPEG compression [28]. Image sam-
ples are denoted byI(u; v;m), where(u; v) are the row and column indices of the
mth block (where the blocks are numbered in row scan). All blocks are DCT trans-
formed, and the coefficients for the same frequency from all blocks are grouped
into a sample sequence - asub-signal. Due to the8 � 8 blocks, this scheme gives
64 vectors~xi, where the indexi denotes the sub-signal number. A different wa-
termark sub-signal~wi is embedded in each sub-signal. Since the JPEG quantizer
step sizes�i are different for all frequencies, 64 differentsub-channelshave to
be considered. The sub-channels are numbered according to the common zigzag
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scan of the DCT coefficients. Throughout the paper, no channel coding is consid-
ered explicitly. However, we investigate the watermark correlation measured per
sub-channel. This approach can be considered as channel coding using a repetition
code of lengthMi. The resulting error rates can be translated into equivalent results
for more sophisticated channel codes. Here, the lengthMi of the vectors~xi equals
the number of8� 8 blocks in the given image.

The quantizer step sizes for JPEG-baseline compression are optimized for subjec-
tive quality and can be parameterized via a scalar quality factor2 QF . The main
idea for the adaptation of the watermark strength is that the embedding should in-
troduce roughly the same distortion as JPEG compression with a certain quality
factorQFe (indexe for ’embedding’). This way, we achieve a quantifiable subjec-
tive quality without conducting extensive subjective tests. To realize this approach,
uniform scalar quantization with step size�i (as it is used in JPEG compression
with a certain qualityQFe) is applied to the elements of the corresponding vector
~xi. The variance of the introduced distortion is measured. Estimating the quantiza-
tion noise via the high-resolution result�2

i =12 would be not appropriate, since the
actual distortion is especially for the strongly quantized high frequency components
much lower than�2

i =12.

The watermark variance�2wi
in every sub-channel is chosen equal to the mea-

sured power of the quantization noise. This embedding scheme does not fulfill the
power spectrum condition derived in [29,30]. However, we found that the presented
scheme gives better perceptual quality than methods strictly following the power
spectrum condition. After all�2wi

are determined, a Gaussian pseudo-noise vector
~wi with the corresponding standard deviation is generated for each sub-channel and
added to~xi. The seed for the pseudo-noise generator can be considered the secure
key for the watermarking scheme. Finally, the elements of the resulting 64 water-
marked vectors~si are transformed by an inverse DCT.

5.3 Statistical Models for DCT Coefficients

In Section 4 only Gaussian and Laplacian random variablesx were considered as
models for the host data. However, it is well known [31,32] that DCT coefficients
of images can be modeled more accurately via a generalized Gaussian random vari-
able. The PDF of a generalized Gaussian random variable with mean�, standard
deviation�, and shape factor� is given by

px (x) =
�

2�(1=�)
b(�; �) e�b(�;�)

� jx��j� ; (50)

2 QF = 100, highest quality with step size� = �min for all coefficients;QF = 1:
lowest quality with step size� = 256�min
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where

b(�; �) =
1

�

vuut�(3=�)

�(1=�)
and �(a) =

1Z
0

ua�1 e�u du: (51)

The PDF given in (50) reduces to that of a Gaussian or Laplacian random variable
for � = 2 or � = 1, respectively. Methods for estimating the parameter of the
generalized Gaussian model from sample data are described in [31,33]. Since we
are not aware of a closed-form expression for the characteristic function of the PDF
given in (50), the samples of the characteristic function are computed numerically
where necessary.

Besides the described statistical models, the specific PDF of the host sub-signal~xi
is estimated. For this estimated PDF, the characteristic function is derived numeri-
cally, too. In the case of short signals, the estimated PDF cannot be considered as
a statistical model, rather the results are specific to the realization of the given host
signals~xi.

5.4 Simulation Settings

In order to reduce the number of free parameters, we will discuss only the results
for an embedding quality ofQFe = 70, which gives a watermarked image with
sufficiently high quality. As a test image, we use the256� 256 gray-scale “Lenna”
picture. The given image size leads to 10248 � 8 blocks and, thus toMi = 1024
samples for each sub-channel~xi.

200 differently watermarked images~I(u; v;m) were produced, using the scheme
depicted in Fig. 8, where the different watermarks were obtained by different seeds
for the pseudo-random number generator. The watermarked images were JPEG
compressed and decompressed, each with 20 different quality factorsQFa (indexa
for ’attack’) betweenQFa = 5 andQFa = 100.

For watermark detection, the attacked public document is transformed again by the
8� 8 block-DCT. Then the signals~yi for the different sub-channelsi are correlated
with the corresponding watermarks~wi. Here, we will only discuss the detection
performance for single sub-channels. In practical schemes, the detection results
from all sub-channels can be combined to achieve a maximum robust watermark
detection, as mentioned in Section 1.

For a fair test, the detection process is carried out for both hypothesesH1 andH0,
i.e., for documents that are or are not watermarked by~w. For simplicity we choose
as reference a completely un-watermarked image. Therefore, the resulting detection
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variance can be computed theoretically with (44). The un-watermarked image is
always compressed in the same way that the watermarked image was compressed.

5.5 Discussion of Experimental Results

In general, we found that the experimentally derived results match the results pre-
dicted by the theory presented in Section 4. Naturally, the best match can be achieved
when using the estimated PDF to describe the host sub-signals~xi. The generalized
Gaussian model usually delivers similar results, but the Laplacian or Gaussian mod-
els fit only in some few cases. We will briefly discuss the measured parameters like
�, DNR per sub-channel, embedding qualityWDR and the shape parameter of the
generalized Gaussian model. Then the expected watermark correlation after quanti-
zation will be discussed for different sub-channels. The length of the sub-channels
becomes important when regarding the standard deviation of the measured correla-
tion values. In this case, we also have to distinguish between detection with original
and blind detection. Finally, measured detection error probabilities are compared
with those derived theoretically.

5.5.1 Characteristics of the Test Data

Due to space constraints, it is not possible to describe and discuss the results for
all different simulation parameters. Therefore, some representative results are se-
lected. Here, we discuss only results for the sub-channels 1, 10 and 22. The de-
tection results are presented parameterized by the quality factorQFa of the JPEG
compression attack. Table 1 shows the ratios� = �x=� and the corresponding
host-document-to-noise ratio (DNR) measured after JPEG compression for differ-
ent quality factorsQFa. Thus, it is possible to relate the presented results to those
from Section 4. The last line in Table 1 shows the watermark-to-host-document ra-
tio (WDR), which characterizes the embedding strength. The values reveal that the
chosen embedding scheme leads to much stronger embedding distortion (higher
WDR) in the high frequency sub-channels. TheWDR of the sub-channel 10 is
approximately equal to theWDR considered in Section 4. Note that theDNR for
sub-channel 22 does not increase monotonically with increasing JPEG quality fac-
torQFa. This effect has been observed for all sub-channels with largeWDR. Since
the distortion is measured relative to the original coefficients, this distortion mea-
surement includes watermark noise and quantization noise. However, quantization
does also reduce the watermark noise to some extent, which leads to the observed
effect.

The parameter of the generalized Gaussian models for the considered sub-channels
are given in Table 2. In JPEG compression the image samples are shifted from
unsigned integers to signed integers [28], thus negative samples of the sub-channel
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Table 1
Strength of quantization attack and distortion dependent on the quality factorQFa. The
first three columns show the ratio� = �x=�. The last three columns show the sub-channel
DNR measured after JPEG attacks.

� DNR per sub-channel

in dB

QFa i = 1 i = 10 i = 22 i = 1 i = 10 i = 22

10 4.63 0.22 0.02 23.93 3.02 -0.05

20 9.26 0.44 0.04 29.86 6.45 -0.01

30 13.72 0.66 0.06 32.87 8.81 -0.01

40 18.52 0.85 0.08 35.25 10.11 0.09

50 23.15 1.09 0.10 36.54 11.37 0.34

60 28.49 1.39 0.13 37.85 12.26 0.48

70 37.04 1.91 0.17 39.00 13.48 0.48

80 61.74 2.54 0.25 40.69 14.50 -0.07

90 123.48 5.08 0.49 41.62 15.84 -0.20

100 370.43 15.25 4.90 41.97 16.44 1.40

Embedding Quality (WDR/dB) -42.075 -16.622 -1.527

1 (DC DCT-coefficients) can occur. Further, a factor of 8 is introduced in each DCT-
coefficient due to the fast algorithm for the DCT. The samples of the sub-channel 1
are almost uniformly distributed. Therefore, the shape factor�x1 is relatively large.
For all other sub-channels, shape factors�xi < 1 have been measured. Thus, the
AC DCT-coefficients have a distribution that is more peaky than that of a Laplacian
random variable.

Table 2
Parameter of generalized Gaussian model for the considered sub-channels.

sub-channel �x �x �x

i = 1 -1876.532 2963.445 3.136

i = 10 0.409 122.007 0.530

i = 22 -1.851 39.232 0.684

5.5.2 Expected Watermark Correlation per Sub-Channel

Table 1 reveals that for sub-channel 1, corresponding to the DC values of all blocks,
JPEG compression applies relatively fine quantization. Even forQFa = 10, the
normalized parameter� is still much larger than 1. In addition, the flat distribution
of the samples of sub-channel 1 allows for the usage of fine quantization theory.
Following the arguments given in Section 4.2, fine quantization does not decrease
the watermark correlation. Our experiments confirm this result. We do not present
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a plot of the measured cross-correlation since it is almost constant for all values of
QFa.
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Fig. 9. Watermark correlation for sub-channel 10

Fig. 9 depicts the cross-correlationE fywjH1g for sub-channel 10. We observe that
the results found by the estimated PDF and the generalized Gaussian model agree
with the experimentally measured values. For a wide range of quality factorsQFa

for the JPEG compression, the cross-correlation decreases almost linearly with de-
creasing values ofQFa. For QFa = 5, the cross-correlation with the embedded
watermark is lost. Fig. 9 also includes curves for Gaussian and Laplacian models
for the host-signal. These curves are similar to those in Fig. 4 in Section 4.2, except
that the quality after quantization is indicated by the JPEG quality factorQFa. The
QFa-values used in Fig. 9 can be translated to�-values with help of Table 1. The
theoretical results using the Gaussian or Laplacian model for the input sequence
differ significantly from those found by the generalized Gaussian model or by ac-
tually measuring the cross-correlation. The results confirm the observation made
in Section 4 that especially Gaussian host signals offer much larger robustness to
quantization attacks than Laplacian signals or signals with even more peaky distri-
butions.

Finally, we will briefly discuss the results for the sub-channel 22, as presented in
Fig. 10. The watermark in this sub-channel is not robust at all due to the small
variance of the host signal and the small subjective significance of these DCT-
coefficients. The�-values given in Table 1 show that JPEG applies to these coef-
ficients strong quantization – even for high quality factors. As a result the cross-
correlation decreases already significantly after JPEG compression with quality
factorsQFa > QFe = 70. The generalized Gaussian model agrees closely with
the experimental results, but the Gaussian and Laplacian model do not. However,
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this result is hidden by the steep decrease of the cross-correlation in the range of a
few quality factors.
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Fig. 10. Watermark correlation for sub-channel 22

5.5.3 Standard Deviation of Watermark Correlation

Besides the cross-correlationE fywg, the standard deviation of the estimation of
this cross-correlation has been measured. The correlation length, here equal to the
sub-signal lengthM = 1024, and the availability of the original document have an
important influence on the achievable standard deviation and thus on the detection
error probability.

In Fig. 11 the experimental results and the results when using the generalized Gaus-
sian model are shown for the sub-channel 1. In these plot the standard deviation
of the experimentally measured correlation is indicated by a ’+’-sign and a line
above and underneath of each correlation value. The theoretical results are plot-
ted similarly, however, with solid lines. Both hypothesesH1 andH0 are considered
for detection with original. The plots show that the theoretical and experimental
results agree approximately. Even better results can be achieved when using the
estimated PDF instead of the generalized Gaussian model for the theoretical com-
putation. Nevertheless, the generalized Gaussian model is sufficiently accurate. For
large JPEG qualitiesQa, we see that the standard deviations for hypothesisH1 and
H0 differ. This agrees with the observation made in Section 4 for fine quantization.
The left plot in Fig. 11 indicates that the detection with original is relatively ro-
bust for largeQa. However, blind detection is not possible for sub-channel 1 due
to the small embedding strength. The right plot in Fig. 11 depicts for clarity only
the results for hypothesisH1 of the blind detection case. The standard deviation of
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Fig. 11. Correlation mean and standard deviation for sub-channel 1 (DC value)

the correlation measurement is much larger than 1 and thus leads to high detection
error probabilities.

In Fig. 12 the watermark detection for sub-channel 10 is shown in the same man-
ner as for sub-channel 1 in Fig. 11. Both hypothesesH1 andH0 are depicted for
detection with original (left plot) and for blind detection (right plot). Again, the
theoretical results are derived using the generalized Gaussian model. We observe
that the measured and predicted standard deviations are very similar. The right plot
reveals that the standard deviation for hypothesisH1 can even decrease for stronger
quantization. This can be explained by the fact that strong quantization also reduces
the interference from the original.

5.5.4 Sub-Channel Detection Error Probabilities

The presented results for the sub-channel watermark cross-correlation and its stan-
dard deviation enable the prediction of detection error probabilities, as described
in Section 2. The experimental detection error rate of all 200 watermarks per sub-
channel can be compared with the predicted values. However, only error probabili-
ties down to0:5% can be verified with this small number of experiments. Therefore,
Fig. 13 and 14 show the measured error probabilities only for the plots with linear
axis. The plots with logarithmic axis depict only error probabilities predicted as-
suming Gaussian distributed cross-correlation values. These error probabilities are
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Fig. 12. Correlation mean and standard deviation for sub-channel 10

computed from the correlation meanE fcjH1g and the variances VarfcjH1g and
VarfcjH0g.

Fig. 13 and 14 show the error probabilities for the watermark in the sub-channel
10. When detecting with the original, the error probability after a JPEG attack with
QFa = 35 (half of the embedding qualityQFe) is still lower than10�5. However,
with a host signal of equal power but Gaussian distribution we could expect error
probabilities around10�9, as indicated by the theoretically derived curve in Fig. 13.
For blind detection, error probabilities down to 1% are measured. Note, that this is
the result for one sub-channel. In practical applications, the cross-correlation in
several sub-channels must be combined to achieve sufficiently low detection error
probabilities (see e.g. [1]). Fig. 14 shows clearly that the measured detection error
probabilities agree with those predicted using the generalized Gaussian model or
by measuring the cross-correlation and its variance for all 200 simulations.

The error probabilities for sub-channel 1 and 22 are not plotted. Due to the small
embedding strength for sub-channel 1, it is impossible to detect the watermark in
this sub-channel with a blind detector. Using the original, it is possible to achieve
low error probabilities down to quality factorsQFa = 20. The watermark in sub-
channel 22 is not very robust. Detection with original has low error probabilities
only after JPEG compression withQFa > QFe = 70.
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Fig. 13. Error probability for watermark detection with original (sub-channel 10)

5.5.5 Summary

The presented discussion could be extended to results for all different DCT co-
efficients, different embedding qualities and different watermark distributions. All
experiments confirm that the theory presented in Section 3.2 and Section 4 allows
the prediction of the robustness of correlation detection of an additive watermark
after uniform scalar quantization attacks. Besides the absolute power of the host’s
sub-signals, the shape of the PDF for each of the sub-signals~xi has an important
influence on the watermark detection robustness.

6 Conclusions

The major goal of this article is to analyze the effects of quantization on additive
watermarking schemes. Particularly, uniform scalar quantization of watermarked
documents with subsequent watermark detection using a correlation detector is in-
vestigated. A key factor for the analysis is the computation of statistical dependen-
cies between the quantized watermarked document and the watermark itself. These
dependencies have been derived in Section 3 by extending the theory of dithered
quantizers. In Section 4 the performance of watermark detection using correlation
is analyzed with help of the derived expressions. One important result is that the ex-
pected correlation decreases significantly for coarse quantization of non-uniformly
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Fig. 14. Error probabilities for blind watermark detection (sub-channel 10)

distributed host signals. Thus, it is not possible to model the interfering noise at
the watermark detector by AWGN. Although the investigated correlation depends
on the distribution of the host document and the watermark, the distribution of the
watermark does not play a significant role for common strengths of the watermark
signal. However, the distribution of the host signal is very important. We showed
that watermarks in Gaussian host signals are much more robust in the presence of
quantization attacks than watermarks in Laplacian host signals. For the same host-
document-to-noise ratio (DNR) after quantization, watermarks in Gaussian host
signals can be detected with much lower error probability. The theoretically derived
results are confirmed in Section 5 for an example image watermarking scheme un-
der JPEG compression attacks. The experiments show that the parameters (coarse-
ness of quantization, watermark embedding strength) considered for the theoreti-
cal analysis are likely to occur in practical environments. Further, the experiments
show that the watermark detection error probability after JPEG compression can
be predicted with sufficient accuracy using a generalized Gaussian model for the
DCT coefficients. Thus, it is possible to compute the maximal robustness of a given
watermark and given host image against JPEG compression.
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Appendix

A Summary of Formulas for the Statistical Signal Models Used

Gaussian, Laplacian, uniform and bipolar random variables are considered in this
article as examples for the input signalx and the dither signald (here equal to
the watermarkw). To enable straightforward application of the presented theory,
closed form expression of the considered PDFs and characteristic functions are
summarized here.

Gaussian random variable:

px (x)=
1p
2��x

e
� x

2

2�2
x (A.1)

M~x (ju)= e�
1

2
u2 (A.2)

M
(1)
~x (ju)= ju e�

1

2
u2 (A.3)

M (2)
~x (ju)= (1� u2) e�
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M
(3)
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Laplacian random variable:

px (x)=
1p
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uniform random variable:
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bipolar random variable:

px (x)= 0:5 (Æ (x� �x) + Æ (x + �x)) (A.15)
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