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Abstract

Using a theoretical approach based on random processes, signal processing, and information theory, we study the
performance of digital watermarks subjected to an attack consisting of linear shift-invariant "ltering and additive colored
Gaussian noise. Watermarking is viewed as communication over a hostile channel, where the attack takes place. The
attacker attempts to minimize the channel capacity under a constraint on the attack distortion (distortion of the attacked
signal), and the owner attempts to maximize the capacity under a constraint on the embedding distortion (distortion of the
watermarked signal). The distortion measure is frequency-weighted mean-squared error (MSE). In a conventional
additive-noise channel, communication is most di$cult when the noise is white and Gaussian, so we "rst investigate an
e!ective white-noise attack based on this principle. We then consider the problem of resisting this attack and show that
capacity is maximized when a power-spectrum condition (PSC) is ful"lled. The PSC states that the power spectrum of the
watermark should be directly proportional to that of the original signal. However, unlike a conventional channel, the
hostile attack channel adapts to the watermark, not vice versa. Hence, the e!ective white-noise attack is suboptimal. We
derive the optimum attack, which minimizes the channel capacity for a given attack distortion. The attack can be roughly
characterized by a rule-of-thumb: At low attack distortions, it adds noise, and at high attack distortions, it discards
frequency components. Against the optimum attack, the PSC does not maximize capacity at all attack distortions. Also,
there is no unique watermark power spectrum that maximizes capacity over the entire range of attack distortions. To "nd
the watermark power spectrum that maximizes capacity against the optimum attack, we apply iterative numerical
methods, which alternately adjust the watermark power spectrum and re-optimize the parameters of the optimum attack.
Experiments using ordinaryMSE distortion lead to a rule-of-thumb:White watermarks perform nearly optimally at low
attack distortions, while PSC-compliant watermarks perform nearly optimally at high attack distortions. The e!ect of
interference from the original signal in suboptimal blind watermarking schemes is also considered; experiments examine
its in#uence on the optimized watermark power spectra and the potential increase in capacity when it can be partially
suppressed. Additional experiments demonstrate the importance of memory, and compare the optimum attack with
suboptimal attack models. Finally, the rule-of-thumb for the defense is extended to the case of frequency-weightedMSE
as a distortion measure. � 2001 Elsevier Science B.V. All rights reserved.
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Nomenclature

ACGN additive, colored Gaussian noise
AR autoregressive
AR(p) pth order autoregressive process
AWGN additive, white Gaussian noise
GA `greedya annealing
GMA greedy marginal analysis
IID independent, identically distributed
LSI linear, shift-invariant
M-D M-dimensional
MAP maximum a posteriori
MMSE minimum mean-squared error
MSE mean-squared error
RV random variable
PSC power-spectrum condition
SA simulated annealing
WGN white Gaussian noise

* 1-D or M-D convolution
a, 0)a)1 original-interference suppression factor
a
�
, k3�1,2,2, p� coe$cients of 1-D AR(p) process

A(�o ), 0)A(�o ))1 frequency-dependent scaling factor in optimum attack
C channel capacity (or maximum achievable rate for 0)a(1)
C(�) channel capacity as a function of �
C

�{
channel capacity or maximum achievable rate when p% of
original-interference power is suppressed

C
�

target channel capacity
C

���
, C

���
maximum and minimum channel capacities after attack

cl[x] clipping function (clip x to interval [0,1])
D

	��	

maximum allowable embedding distortion

D
�

target attack distortion
D

��
embedding distortion

D
�( �

attack distortion
D

�( �
(�) attack distortion as a function of �

D
�( �����

, D
�( �����

maximum and minimum attack distortions
�[ no ] M-D unit point-sample function
e[n]"y( [n]!x[n] 1-D error or di!erence signal (random process)
�

��
(�) 1-D power spectrum of e[n]

F
��
(�) 1-D frequency-weighted error power spectrum

f [n], f [ no ] 1-D, M-D impulse responses of LSI frequency-weighting "lters
F(�), F(�o ) 1-D, M-D Fourier transforms of f [n] and f [ no ], respectively
g[n], g[ no ] 1-D, M-D impulse response of attack "lter
g��[ no ] M-D impulse response of inverse attack "lter
G(�), G(�o ) 1-D, M-D transfer functions of attack "lter
�

�
frequency support of G(�o )

�
�

cuto! frequency of G(�)
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�A di!erent class of watermarks, known as fragile watermarks, are designed to fail in a prescribed manner after mild processing of
watermarked data. Data authentication is a primary application area of fragile watermarks, which are not considered here.

h[ no ] M-D impulse response of ideal whitening "lter
H(�o ) M-D transfer function of ideal whitening "lter
�,�

���
,�

���
Lagrange multiplier and its minimum and maximum values

�H solution for � such that C(�H)"C
�
or D

�( �
(�H)"D

�
M dimensionality
N number of equal-support subsets used to cover �
n, no "(n

�
, n

�
,2, n

�
) 1-D, M-D time/space indices

�, �o "(�
�
,�

�
,2,�

�
) 1-D, M-D frequency variables

�"[!�,�)� M-D baseband frequency support
v[ no ] M-D Gaussian noise
w[n], w[ no ] watermark (1-D or M-D random process)
��
�

variance of w[n] or w[ no ]
�

��
(�), �

��
(�o ) 1-D and M-D power spectra of w[n] and w[ no ], respectively

W"��o :���
(�o )'0� frequency support of �

��
(�o )

F
��
(�) 1-D frequency-weighted watermark power spectrum

F�
��
(�) 1-D frequency-weighted, PSC-compliant watermark power spectrum

x[n], x[ no ] original signal (1-D or M-D random process)
P
�

perceptual power of x[n] or x[ no ]
y[ no ] watermarked signal (M-D random process)
y( [ no ] attacked signal (M-D random process)
z[ no ] e!ective received signal (M-D random process)
n
	
[ no ] e!ective noise (M-D random process)

w
	
[ no ] e!ective watermark (M-D random process)

z
�
[ no ] e!ective inverse-"ltered received signal (M-D random process)

n
�
[ no ] e!ective inverse-"ltered noise (M-D random process)

z
�
[ no ] whitened, e!ective received signal (M-D random process)

n
�
[ no ] whitened, e!ective noise (M-D random process)

w
�
[ no ] whitened, e!ective watermark (M-D random process)

F
	
, G

	
, <

	
,=

	
, X

	
piecewise-constant approximations of F(�o ), G(�o ), �



(�o ), ���
(�o ), and

�
��
(�o ), respectively, over nth subset of �

1. Introduction

Digital watermarkingmay be described as the secure, imperceptible, robust communication of information
by direct embedding in and retrieval from digital data, typically multimedia data such as digital audio,
images [15], or video [22,30]. Potential applications include tracing the distribution path of watermarked
data, multimedia annotation, detection of modi"cations, and copyright protection [23,49].
Security indicates that only authorized parties should be able to retrieve, and possibly alter, the embedded

information. Imperceptibility means that the watermarked data should be perceptually equivalent to the
original, unwatermarked data (sometimes called `host dataa or `cover dataa). In some applications this
requirement can be relaxed to `unobtrusivenessa, meaning that small perceptible di!erences between the
watermarked and original data can be tolerated. Robustness means that it should be possible to retrieve the
embedded information reliably even after processing of the watermarked data;� any such processing is
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known as an attack. Attacks may be coincidental, such as compression of a legally obtained, watermarked
audio "le or image, or malicious, such as an attempt by a multimedia pirate to destroy the embedded
information and prevent tracing of illegal copies of watermarked digital video.
Often, the design of robust watermarking schemes has been motivated by heuristics and intuition. Various

authors have argued that watermarks should be embedded in di!erent frequency ranges, e.g., lowpass,
bandpass, highpass, or white watermarks, without reaching a consensus. In early spread-spectrum water-
marking schemes (e.g. [22,42]), white-noise watermarks were employed by direct extension from spread-
spectrum communications and by the idea that robustness would be enhanced by distributing the watermark
over all frequencies. In an image watermarking context, Cox et al. [15] were among the "rst to propose
embedding in the `perceptually signi"cant frequency componentsa of the original image. They justi"ed this
position by pointing out that these components facilitate perceptual masking [49] and that an attacker
cannot alter these components without also severely degrading the watermarked image. Other authors (e.g.
[54,55]) used high-frequency watermarks, which are easier to separate from the typically lowpass original
signal. Still others (e.g. [28,36]) believed that lowpass watermarks would introduce unacceptable embedding
distortion and highpass watermarks would be susceptible to attack; as a compromise these authors
advocated the used of bandpass watermarks.
Most of the early (and current) work in watermarking has been applied, with robustness and impercep-

tibility evaluated experimentally [32]. Many attacks consist of additive noise, compression (e.g., MP3 for
audio, JPEG for images, and MPEG-2 for video), or geometric transformations such as rotation, shifting,
and scaling [35].
Recently, more theoretical approaches have attempted to provide watermarking, and the larger
"eld of information hiding, with a stronger foundation [8,10,16,27,31,33,34,44,47,48,51]. Of particular
note, Moulin and O'Sullivan [34] have introduced a powerful information-theoretic framework for
studying watermarking. They cast the problem as a game between the owner and the attacker. The owner's
goal is to send and receive as much information as possible, while the attacker's goal is to hinder
communication.
This paper focuses on the con#icting requirements of imperceptibility and robustness and takes a theoret-

ical approach based on random processes, signal processing, and information theory. We do not treat the
issue of security here; we assume that proper crytographic methods and protocols are used to maintain key
security. The intuitive notion of robustness can be stated as follows: `A watermark is robust if communica-
tion of the embedded information cannot be impaired without also rendering the attacked data useless.a
Hence, to evaluate robustness, we must pose two questions simultaneously: `When is communication
impaired?a and `When is the attacked data useless?a The "rst question suggests that we measure the capacity
or a related quantity; the latter suggests that we measure the perceptual quality, or distortion, of the attacked
data. In addition, to ensure imperceptibility, we should measure the distortion of the watermarked data after
watermark embedding.
In the spirit of [34], we consider the con#icting goals of the attacker and owner. The attacker wishes to

minimize the communication rate while keeping the distortion of the attacked data small enough so that it
remains useful, while the owner wishes to maximize the communication rate while keeping the distortion of
the watermarked signal acceptably low. We apply Kerckho!'s principle [43] for both the owner and attacker
and assume that the attacker knows the owner's methods, and vice versa. We emphasize the use of
a well-de"ned criterion for evaluating robustness, since otherwise it is di$cult to compare the utility of
di!erent watermarking methods.
Section 2 introduces notation, a mathematical model for the attack and defense, and expressions for

distortion and capacity. Section 3 derives the optimum attack and shows that there may not be a unique
defense. Section 4 demonstrates the di$culty of "nding a defense and describes some numerical methods for
computing the defense. Finally, Section 5 summarizes the main conclusions and discusses the practical
implications of this study.
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Fig. 1. Block diagram of watermark embedding, LSI "ltering-additive noise attack, and watermark reception. The original x[ no ] may
not be physically available to the receiver, but the watermarking system may exploit knowledge of x[ no ] during embedding so that
it behaves as if it eliminates some or all of the interference from x[ no ]. Thus, the receiver can ewectively remove ag[ no ]*x[ no ]
from y( [ no ].

2. Mathematical models

We treat the data as a discrete-time/space signal and in turn model signals as ergodic, zero-mean,
wide-sense stationary,M-dimensional (M-D) discrete-time/spaceGaussian random processes. Indexing of an
M-D signal x is denoted by x[ no ], where no "(n

�
, n

�
,2, n

�
). Similarly, theM-D Fourier transform is given

byX(�o ) with �o "(�
�
,�

�
,2,�

�
). Throughout this paper, we consider only the baseband frequency support

�"[!�,�)�, with the M-D 2�-periodicity understood. Boldface indicates random quantities, such as
x[ no ]. We ignore quantization e!ects due to digitization of signal values and assume in"nite precision.
The original signal is modeled by the random process x[ no ] with variance ��

�
and power spectrum�

��
(�o ).

Likewise, the embedded watermark is represented by the random process w[ no ] and has variance ��
�
and

power spectrum �
��
(�o ). The original x[ no ] and watermark w[ no ] are assumed independent. Denote the

frequency supports of �
��
(�o ) and �

��
(�o ), respectively, by 	"��o :���

(�o )'0� andW"��o :���
(�o )'0�.

Although these assumptions are ideal, most watermarking applications deal with multimedia, which can
often be modeled as being locally stationary and Gaussian. For example, samples in #at image regions may
be treated as realizations of independent, identically distributed (IID) Gaussian random variables (RVs) with
a low variance, and samples in textured regions are treated as realizations of IID Gaussian RVs with a high
variance.

2.1. Watermark embedding and attack

A block diagram of the embedding model and attack appears in Fig. 1. We discuss the components of this
diagram in this section.We "rst model the embedding of watermark w[ no ] into the original x[ no ] by simple
addition; the watermarked signal is y[ no ],

y[ no ]"x[ no ]#w[ no ], (1)

where x[ no ] and w[ no ] are assumed independent.
Next, we model the attack. Given y[ no ], the attacker produces an attacked signal y( [ no ]. We assume that

the attacker employs linear shift-invariant (LSI) "ltering and additive colored Gaussian noise (ACGN). Let
g[ no ] and G(�o ), respectively, denote the impulse response and transfer function of the attack "lter. Let v[ no ]
denote Gaussian noise that has variance ��



and power spectrum �




(�o ) and is independent of x[ no ] and

w[ no ]. The attacked signal y( [ no ] is

y( [ no ]"g[ no ]*y[ no ]#v[ no ]"g[ no ]*(x[ no ]#w[ no ])#v[ no ]. (2)

Applying Kerckho! 's principle, the attacker is assumed to know �
��
(�o ) and �

��
(�o ), and hence, to have

complete knowledge of the statistics of x[ no ] and w[ no ]. In Section 3 we explain how the attacker exploits
this knowledge and derive the optimum attack.
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The attack model (2) is ideal. Gaussian noise is a common channel model and is frequently used to
approximate synchronous signal degradations. For example, the noise could model distortions introduced
after printing and scanning of a watermarked image that has been re-aligned. Also, many lossy compression
schemes operate in the frequency domain; they discard lower-amplitude frequency components and quantize
higher-amplitude frequency components. Hence, Eq. (2) can also approximate compression as a combination
of frequency-selective "ltering and additive (quantization) noise.
In addition, it is not unreasonable to expect that an attacker might use "ltering (because of its simple

implementation) or Gaussian noise (since in an additive-noise channel with limited noise variance, commun-
ication is most di$cult when the noise is Gaussian [40]). Finally, just as a real-world original signal may be
modeled as being locally stationary, the attack model can represent locally stationary processing of the
watermarked signal.
Recall that the frequency supports of the watermark and original are W and 	, respectively. Clearly

W should be a subset of 	, for otherwise the attacker could "lter out the portion of the watermark in (W!	)
without introducing any distortion. As will be shown in Section 4.3.1, the optimum watermark power
spectrum hasW"	 to resist the optimum attack.

2.2. Watermark reception

Finally, we consider retrieval of the information carried by the watermark. Given the attacked signal
y( [ no ], the receiver attempts to determine the information conveyed by w[ no ]. Applying Kerckho!'s
principle, we assume that the receiver has knowledge of g[ no ]. This assumption is highly ideal, but it allows
us to determine performance limits: The receiver will perform best if it has exact knowledge of g[ no ]; less
accurate knowledge of g[ no ] can only degrade performance. Hence, the results we "nd can be interpreted as
upper bounds on communication performance.
Depending on the design of the watermarking system, the original x[ no ] may interfere with reception.

Consider two extreme scenarios: reception-with-original and blind reception. In the "rst scenario, the
receiver has access to x[ no ]; then it can eliminate interference from x[ no ] by computing
z
�
[ no ]"y( [ no ]!g[ no ]*x[ no ]"g[ no ]*w[ no ]#v[ no ] and then working with z

�
[ no ]. In the second

scenario, the receiver has no knowledge of x[ no ], which acts like an additional source of interference; then
z
�
[ no ]"y( [ no ].
For the case of a memoryless Gaussian original and the additive white Gaussian noise (AWGN) channel,

Chen and Wornell [10] have applied the work of Costa [13] to show that the theoretical capacity of an
optimal blind receiver is actually equal to the capacity of the receiver-with-original. This surprising result
occurs because the original x[ no ] is known during watermark embedding [16], so the problem is that of
communication with side information (x[ no ]) at the encoder but not at the decoder [13,21,26,41]. Rather
than attempting to suppress interference from x[ no ], the communication system employs channel codes
designed with the statistics of x[ no ] in mind [12,13,45].
A few blind watermarking systems based on Costa's result have been proposed [9,11,12,16,19,38].

Notably, Chen andWornell [8] proposed a system that asymptotically approaches capacity. Chou et al. [11]
recognized the duality between the blind watermarking problem and that of lossy source coding with side
information at the decoder but not at the encoder, and they have applied recent results in distributed (lossy)
source coding to blind watermarking. A further discussion of this duality appears in [45,46]. Despite these
developments, some interference from the original may be unavoidable in practice; one di$culty is that the
codebook can become very large, greatly increasing the complexity of a real system [19,34].
For these reasons, we introduce an original-interference suppression factor a, 0)a)1, and assume that

the ewective received signal is z[ no ],

z[ no ]"y( [ no ]!ag[ no ]*x[ no ]"g[ no ]*w[ no ]#(1!a)g[ no ]*x[ no ]#v[ no ]. (3)
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�As a service to the reader, we avoid using the pun `blind-and-dumb receptiona.

Note that x[ no ] may not actually be available to the receiver; Eq. (3) expresses that the watermarking system
performs as if it operated on z[ no ]. The case a"0 corresponds to blind reception if the watermarking
system does not exploit the knowledge of x[ no ] available during embedding; we use the term `conventional
blind receptiona to refer to this case.� The case a"1 corresponds to reception-with-original and to an
optimal blind receiver. If the complexity of a suboptimal blind watermarking scheme can be related to a, it is
then possible to evaluate the performance-complexity trade-o!s of the scheme.
Finally, in our model, we always assume synchronization between the embedding and retrieval units. As

explained in the introduction, some current attacks operate by disrupting synchronization. Such attacks do
not actually remove or destroy the watermark, so a more sophisticated receiver should be able to
resynchronize [6,7,17,18,24]. Hence, we assume synchronization throughout this paper.

2.3. Distortion expressions

In watermarking, the distortion of various signals must also be considered. As a compromise between
perceptual relevance and mathematical tractability, we measure distortion using frequency-weighted mean-
squared error (MSE). For a signal x( [ no ] and a reference signal x[ no ], de"ne the distortion between x( [ no ]
and x[ no ] by D

�( �
"E[[f[ no ]*(x( [ no ]!x[ no ])]�], where f[ no ] is the impulse response of a LSI fre-

quency-weighting "lter. Letting x
 [ no ]"x( [ no ]!x[ no ], we can write D
�( �

"(2�)���� �F(�o )����
 �

(�o ) d�o ,

where we assume �F(�o )�'0, ∀�o . Of course, �F(�o )�"1, ∀�o , is ordinary MSE distortion. Note that �F(�o )�
could be made dependent upon �

��
(�o ) to approximate some perceptual masking e!ects [49,52].

We are interested in the embedding distortion D
��
and the attack distortion D

�( �
. From (1), the former is simply

D
��

"

1

(2�)���

�F(�o )�����
(�o ) d�o . (4)

For MSE distortion, D
��

"��
�
. To "nd D

�( �
, we use (2) and "nd

D
�( �

"

1

(2�)���

�F(�o )��[�G(�o )!1���
��
(�o )#�G(�o )�����

(�o )#�



(�o )] d�o . (5)

Finally, since ��
�
is the power of the original x[ no ], we de"ne the perceptual power of the original by

P
�
"

1

(2�)���

�F(�o )�����
(�o ) d�o . (6)

2.4. Capacity expressions

We also require an expression for the capacity of the watermarking system. For simplicity, let us
momentarily assume a 1-D AWGN channel with no xltering; i.e., g[ no ]"�[ no ]. The channel noise is
n[n]"x[n]#v[n], where x[n] and v[n] are WGNwith respective variances ��

�
and ��



and are independent

of one another. The state x[n] is known to the encoder, which transmits a signal w[n] subject to a power
constraint ��

�
, and the decoder receives y[n]"w[n]#x[n]#v[n]"w[n]#n[n]. In watermarking, the

state x[n] is analogous to the original, and the transmitted signal w[n] is analogous to the watermark signal.
In the reception-with-original scenario, x[n] is known to both the encoder and decoder. The decoder can

just subtract x[n] from y[n]. The result is just like an AWGN channel with power constraint ��
�
and noise

power ��


, and the capacity is C"�

�
log

�
(1#��

�
/��



) [14,39]. If w[ no ] and v[ no ] are M-D with respective

power spectra �
��
(�o ) and �




(�o ), then the capacity is C"(2�)�����

�
log

�
(1#�

��
(�o )/�



(�o )) d�o [40].
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�Under these assumptions; for non-Gaussian channels, C
����


is likely to be less than C
��� ��������

.
�Of course, in a practical system, signal values are digitized, so the capacity will not actually be in"nite but will be limited by the

precision of the digital representation.

In blind watermarking, x[n] is known to the encoder but not to the decoder. This scenario was considered
by Costa [13], who proved the remarkable and surprising result that the capacity is again
C"�

�
log

�
(1#��

�
/��



). Hence, blind watermarking can theoretically perform as well as reception-with-

original watermarking!�. Also, the capacity is independent of the power ��
�
of the state/original x[n]. The

interested reader is referred to the references in Section 2.2 for more details on Costa's solution.
To extend Costa's result to an M-D Gaussian channel with memory and channel state known to the

encoder, one can divide the frequency spectrum into parallel, independent Gaussian subchannels, apply the
result to each subchannel, and let the number of subchannels go to in"nity [40]. Then for "xed power spectra
�

��
(�o ), ���

(�o ), and �



(�o ), C"(2�)�����

�
log

�
(1#�

��
(�o )/�



(�o )) d�o .
Our watermarking model includes "ltering and the original-interference suppression factor a. Conse-

quently, we use (3) to write the capacity [29] as

C"

1

(2�)���

1

2
log

��1#
�G(�o )�����

(�o )
(1!a)��G(�o )�����

(�o )#�



(�o )�d�o . (7)

We may interpret (7) as follows. We say that the ewective watermark is w
	
[ no ]"g[ no ]*w[ no ], while the

ewective noise is n
	
[ no ]"(1!a)g[ no ]*x[ no ]#v[ no ]. Then (7) becomes

C"

1

(2�)���

1

2
log

��1#
�

�	�	
(�o )

�
				
(�o ) �d�o . (8)

In the sequel, we will make alternative interpretations where they are useful.
It is important to appreciate the need for noise v[ no ] in (2) and (7). Suppose that g[ no ] is invertible, i.e.,

G(�o )O0, ∀�o . For an ideal watermarking scheme, a"1, so that the original x[ no ] does not hinder
communication. If the noise v[ no ] were not present, then the attack would be invertible; the receiver could
perfectly undo the e!ects of the attack, and C would be in"nite.� The noise v[ no ] is necessary to make the
attack in (2) non-invertible when g[ no ] is invertible. This observation agrees with [34], where the authors
pointed out that if an attack is invertible, it does not impair communication at all.
Strictly speaking, `capacitya is the supremum of achievable rates over all possible watermarking systems.

When 0)a(1, Eq. (7) actually gives the maximum achievable rate of a suboptimal watermarking system.
However, it is common to speak of `capacitya when describing the best performance of a given, perhaps
suboptimal, communications system. For brevity, we use the term `capacitya even when aO1.

2.5. Attacks and defenses

With these expressions for D
��
, D

�( �
, and C, we are ready to look for optimal attacks and defenses. We

assume that �
��
(�o ) and F(�o ) are "xed. We state the attacker's problem formally as:

Problem 1 (Attack). Let �
��
(�o ) be given. For some target capacity C

�
*0, choose G(�o ) and �




(�o ) to minimize

D
�( �

such that C"C
�
.

Alternatively, the attacker could attempt to minimize C under the constraint D
�( �

"D
�
.

The owner seeks a defense; this problem is de"ned as:
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� In this case, the attack reduces to the Gaussian test channel [34].

Problem 2 (Defense). Let G(�o ) and �



(�o ) be given. For some maximum embedding distortion D

	��	

and some

target capacity C
�
*0, choose �

��
(�o ) to maximize D

�( �
such that C"C

�
and D

��
)D

	��	

.

The owner has an additional constraint on D
��
, the embedding distortion. For the Gaussian channel,

capacity increases with signal power, so the inequality constraint can be replaced by the equality
D

��
"D

	��	

, which maximizes the allowable watermark power. Finally, we remark that the owner could

instead try to maximize C under the constraints D
�( �

"D
�
and D

��
"D

	��	

.

The attack distortion D
�( �
at capacity C"C

�
(capacity C at distortion D

�( �
"D

�
) provides a well-de"ned

way of evaluating the robustness of a watermark with a given power spectrum �
��
(�o ) and embedding

distortionD
��

"D
	��	


. With C"C
�
(D

�( �
"D

�
), the greater the attack distortionD

�( �
(capacityC), the more

robust the watermark.
We have constrained attacks to consist of LSI "ltering and ACGN for mathematical tractability.

Consequently, there may exist other, more powerful attacks. In this paper, `optimum linear "lteringa
means the best LSI "ltering attack (in conjunction with ACGN), rather than minimum mean-squared
error (MMSE) or maximum a posteriori (MAP) estimation via "ltering. Any claims of optimality in this
paper refer to optimality within the class of LSI-"ltering/ACGN attacks. However, for x[ no ] memoryless
and Gaussian and MSE distortion, it has been shown [34] that attack (2) is optimum among all possible
attacks,� and Gaussian-distributed signals w[ no ] achieve the highest communication rate in the presence of
this attack. Hence, for x[ no ] Gaussian and MSE distortion, our results will describe the ultimate perfor-
mance limits.

3. Optimum attack

We present the optimum attack, but "rst discuss an intuitively appealing, but suboptimal, attack.

3.1. Ewective white-noise attack and defense ( power-spectrum condition)

Since the receiver knows g[ no ], it can apply the inverse "lter with impulse response g��[ no ] and, without
loss of information [29], compute

z
�
[ no ]"g��[ no ]*z[ no ]"w[ no ]#(1!a)x[ no ]#g��[ no ]*v[ no ]. (9)

We may say that the watermark remains w[ no ] and de"ne the ewective inverse-xltered noise by
n
�
[ no ]"(1!a)x[ no ]#g��[ no ]*v[ no ]. De"ne the power spectrum of n�[ no ] to be

�
	�	�
(�o )"�

(1!a)��
��
(�o )#�G(�o )����




(�o ) if G(�o )O0,

R if G(�o )"0.
(10)

Observe that �
	�	�
(�o ) is well de"ned for all frequencies, even if G(�o )"0 at some frequencies. Then (7) can be

written as [29,40]

C"

1

(2�)���

1

2
log

��1#
�

��
(�o )

�
	�	�
(�o )�d�o . (11)
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	The distortion measure in [48] was MSE; the appendix extends the derivation to frequency-weighted MSE.

In a conventional ACGN channel, �
	�	�
(�o ) remains "xed and �

��
(�o ) is selected to maximize the mutual

information between the encoder and decoder. The solution for �
��
(�o ) is a water-"lling rule [14, Section

10.5], which gives w[ no ] a power advantage over the noise n�[ no ]. It is well known that communication in
the presence of additive Gaussian noise is most di$cult when the noise is white [40].
An ewective white-noise attack based on this idea was recently investigated in [48]. The details appear in

Appendix A.	 Whatever the shape of the watermark power spectrum �
��
(�o ), the attack selects G(�o ) and

�



(�o ) to make �

	�	�
(�o ) directly proportional to �

��
(�o ). Consequently, n�[ no ] is white relative to w[ no ].

The owner cannot gain a power advantage by changing the shape of �
��
(�o ) since the attack will re-adjust

G(�o ) and �



(�o ) as needed.

As a defense against this attack, it can be shown (see [48] or Appendix B) that, for any C"C
�
, D

�( �
is

maximized when

�
��
(�o )"

��
�

��
�

�
��
(�o ). (12)

We refer to Eq. (12) as the power-spectrum condition (PSC). In terms of power spectra, the PSC states that `the
watermark should look like the originala. A watermark that is `spectrally matcheda to the original (in the sense
that (12) is satis"ed) is said to be PSC-compliant. The PSC makes sense intuitively: The watermark appears
white relative to the original, which makes it hardest to estimate or distinguish from the original. Indeed, the
PSC was "rst derived as a necessary and su$cient condition for resisting MMSE estimation of the
watermark from the watermarked signal [47].
For this attack, Eq. (11) simpli"es to C"�

�
log

�
(1#��

�
/��

	�
). When the PSC is satis"ed, G(�o ) and �




(�o )

become constant for all �o , and closed-form expressions for ��
	�
and D

�( �
result [48]. Then a direct relationship

between C and D
�( �
can be obtained (Appendix C):

C"

1

2
log

��1#
(P

�
!D

�( �
)D

	��	

P�

�
!(P

�
!D

�( �
)(a(2!a)P

�
#D

	��	

)�. (13)

This relationship was previously derived in [48] for MSE distortion,

C"

1

2
log

��1#
(��

�
!D

�( �
)��

�
��
�
!(��

�
!D

�( �
)(a(2!a)��

�
#��

�
)�. (14)

If x[ no ] is memoryless and Gaussian, and the distortion measure is MSE, then �
��
(�o ), G(�o ), and �




(�o )

are constant for all frequencies. For this case, the attack model (2) has been shown to be optimum among all
possible attacks [34], and Eq. (14) describes the fundamental relationship between C and D

�( �
.

3.2. Optimum attack

The preceding attack and defense (PSC) each have an intuitively pleasing motivation. However, the hostile
nature of attacks on watermarks means that �

	�	�
(�o ) can adapt to �

��
(�o ). The attacker has `the last worda

on the behavior of the channel, so the attacker, rather than the owner, has a potential power advantage.
Consequently, the e!ective white-noise attack is suboptimal because, by restricting the form of �

	�	�
(�o ), the

attack does not fully exploit its power advantage. This section presents the optimum attack for a given
watermark power spectrum �

��
(�o ).

Under the assumptions of IID RVs, a Gaussian original, andMSE distortion, it was shown in [34] that the
optimum attack among all possible attacks consists of scaling and additive Gaussian noise. The attack model
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(2) thus extends the attack in [32] by adding memory. Hence, for x[ no ] Gaussian and MSE distortion, the
attack we derive will be optimum among all attacks.
The attacker's problem is to "nd G(�o ) and �




(�o ) to minimize D

�( �
subject to C"C

�
(Problem 1). This

problem can be solved by the calculus of variations; the details appear in Appendix D. The optimum attack
"lter and noise power spectrum are given by

G(�o )"A(�o )
�

��
(�o )

�
��
(�o )#�

��
(�o )
, (15)

�



(�o )"(1!A(�o ))G(�o )���

(�o )"(1!A(�o ))A(�o )
��

��
(�o )

�
��
(�o )#�

��
(�o )
, (16)

where 0)A(�o ))1, ∀�o . Note that 0)G(�o )(1, ∀�o , so that the "lter can only attenuate the watermark; it
will never amplify the watermark.
The exact expressions for A(�o ) are rather complicated, so we provide them in stages. Unfortunately, they

do not provide obvious insight into the exact nature of the attack. However, A(�o ) is parameterized by
a Lagrange multiplier �, which leads to an interpretation of the attack behavior in Section 3.2.2.
For any a3[0,1],

A(�o )"1, for �o such that �
��
(�o )"0 or �

��
(�o )"0. (17)

If �
��
(�o )"0, this rule results in G(�o )"�




(�o )"0. There is no power from the original at this frequency, so

the only possible power is due to the watermark; the attack can completely eliminate the watermark at this
frequency without increasing D

�( �
. Similarly, if �

��
(�o )"0, then G(�o )"1 and �




(�o )"0. There is no

watermark power at this frequency, so only the original signal is present (or else it is zero), and the attack
passes this frequency unchanged.
In the equations that follow, we assume that �

��
(�o )'0 and �

��
(�o )'0 at frequency �o . De"ne

cl[x]"�
1 if x'1,

x if 0)x)1,

0 if x(0.

(18)

For a"0 (conventional blind reception),

A
�
(�o )"cl�1#

�
��
(�o )

�
��
(�o )

!

�
2 ln 2

�
��
(�o )#�

��
(�o )

��
��
(�o )�F(�o )�� �. (19)

For 0(a)1, A(�o ) has a di!erent form than (19) (an explanation appears in Appendix D),

A(�o )" cl��1#
�

��
2a(2!a)�

��

!

���
��

��
��

#(2�/ln 2)a(2!a)�
��

�
��
(a(2!a)�

��
#�

��
)�F���

2a(2!a)��
��

�
��

�
��

#�
��

a(2!a)�
��

#�
��
��, (20)

where we have omitted the frequency variable �o on the right-hand side. In particular, with a"1 we have
reception-with-original/optimal blind reception, and (20) reduces slightly to

A
�
(�o )" cl�1#

�
��
(�o )

2�
��
(�o )

!

���
��
(�o )��

��
(�o )#(2�/ln 2)�

��
(�o )���

(�o )(���
(�o )#�

��
(�o ))�F(�o )���

2��
��
(�o ) �.

(21)
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Applying (15) and (16), the corresponding distortion is given by

D
�( �

"P
�
!

1

(2�)���

�F(�o )��A(�o )
��

��
(�o )

�
��
(�o )#�

��
(�o )
d�o (22)

"P
�
!

1

(2�)���

�F(�o )��G(�o )���
(�o ) d�o . (23)

Finally, the capacity can be written as

C"

1

(2�)���

1

2
log

��1#
A(�o )���

(�o )
�

��
(�o )#�

��
(�o )!A(�o )(a(2!a)�

��
(�o )#�

��
(�o ))�d�o . (24)

3.2.1. Lagrange multiplier and relationship between capacity and distortion
In the preceding equations, � is a scalar Lagrange multiplier that determines A(�o ). For any a3[0,1], the

limiting values of � are

�
���

"2 ln 2 min
�o 
W

��
��
(�o )�F(�o )��
�

��
(�o )

(1!a)��
��
(�o )[(1!a)��

��
(�o )#�

��
(�o )]

(�
��
(�o )#�

��
(�o ))�

(25)

and

�
���

"2 ln 2max
�o 
W

��
��
(�o )�F(�o )��
�

��
(�o )

. (26)

When a"0 (conventional blind reception),

�
���

"2 ln 2min
�o 
W

��
��
(�o )�F(�o )��

�
��
(�o )(���

(�o )#�
��
(�o ))
. (27)

When a"1 (reception-with-original/optimal blind reception), �
���

"0.
The preceding expressions for A(�o ) are complicated, but their general behavior depends on � in a simple

way. When �"�
���
, A(�o )"1, ∀�o . As �P�

���
, A(�o )P0, and when �"�

���
, A(�o )"0, �o 3W. Hence,

A(�o ) is a monotonically decreasing function of �; the rate of decrease di!ers from one frequency to another,
but the trend holds for all �o 3W.
Thus, the Lagrange multiplier � parameterizes A(�o ), which in turn determines D�( �

and C. Hence, G(�o ) and
�




(�o ) no longer appear in the expressions for D

�( �
and C (Eqs. (22) and (24), and we can work directly with

D
�( �
, C, and �. Since A(�o ) decreases monotonically from unity to zero with �, D

�( �
is a strictly increasing

function D
�( �
(�) of �, while C is a strictly decreasing function C(�) of �. We recognize that, via A(�o ), � controls

the trade-o! between C and D
�( �
. By sweeping � from �

���
to �

���
, we can explore the full performance range

of a given watermark power spectrum �
��
(�o ). We can thus compute the distortion-capacity function

�(D
�( �
(�),C(�)): �

���
)�)�

���
�. Because D

�( �
(�) and C(�) are invertible functions of �, we can also de"ne the

capacity-distortion function C(D
�( �
)"C(���(D

�( �
)). C(D

�( �
) is decreasing since D

�( �
(�) and C(�) are strictly

increasing and decreasing, respectively.
We can also use the limiting values of � to "nd the range of possible values for D

�( �
and C. They can be

computed by substituting appropriate values of A(�o ) (given next) into (22) and (24). When
�"�

���
, A(�o )"1, ∀�o . In this case, �



(�o )"0, and G(�o ) reduces to the Wiener "lter, which is the MAP
andMMSE estimator for estimating x[ no ] from y[ no ]. However, the attack is now invertible, so it does not
impair communication at all [34] and merely beauti"es y( [ no ]. D

�( �
is minimized, and C is maximized.

Denote these values by D
�( �����

and C
���
. Note that when a"1, C

���
"R because the attack introduces no

noise (v[ no ]"0, ∀no ) and all interference from the original x[ no ] can be eliminated.
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Fig. 2. Example power spectra for original and watermarks used in experiments. All power spectra are shown with a decibel scale.

When �"�
���
, A(�o )"0, �o 3W, andA(�o )"1, �o �W. ThenD

�( �
is maximized and C is minimized; denote

these values by D
�( �����

and C
���
. Note that C

���
is always zero. If 	-W, then D

�( �����
"P

�
because the

attacked signal becomes y( [ no ]"0, ∀no , so the attack must completely destroy the original signal to stop all
communication.

3.2.2. Characterization of attack behavior
We can also use the relationship between � and A(�o ) to characterize the attack. For envisioned

watermarking applications, it is reasonable to assume �
��
(�o )<�

��
(�o ), ∀�o , so that G(�o )+A(�o ) and

�



(�o )+(1!A(�o ))A(�o )���

(�o ). At each frequency �o , G(�o ) decreases from nearly unity to zero with �, and
�




(�o ) "rst increases from zero to �

�
�

��
(�o ) before decreasing back to zero. For small �, G(�o )+1 and

�



(�o )'0, so the attack mainly adds noise; for large �, G(�o )P0, so the attack chie#y discards frequency

components. Thus, we may roughly describe the behavior of the optimum attack with the following
rule-of-thumb: At low distortions (high capacities), add noise; at high distortions (low capacities), throw away
frequency components.

3.3. Experimental results

To examine the theoretical performance of watermarks with di!erent power spectra, we modeled the
watermark and original as 1-D autoregressive (AR) processes [25]. AR processes are often used to model
naturally occurring signals such as audio, images, and video. Recall that a 1-D AR(p) process x[n] is
generated by the stochastic di!erence equation x[n]"��

���
a
�
x[n!k]#u[n], where u[n] is WGN. The

original signal was modeled as an AR(1) process with a
�
"0.95 and power ��

�
. The di!erent watermarks,

each with power ��
�
, were modeled as follows: `PSCa (AR(1), a

�
"0.95), `lowpassa (AR(1), a

�
"0.90),

`bandpassa (AR(2), a
�
"0, a

�
"!0.9025), `highpassa (AR(1), a

�
"!0.95), and `whitea. Examples of the

original, white, and PSC-compliant power spectra appear in Fig. 2.
In decibels, the ratio of original-signal power to attack distortion is 10 log

��
P
�
/D

�( �
"

10 log
��

P
�
/D

��
!10 log

��
D

�( �
/D

��
. In most of the experimental results presented in this paper, we employ

MSE distortion and use the embedding ratio 10 log
��

��
�
/��

�
"!30 dB. For convenience, we use

D
��

"��
�

"1, so that the distortion D
�( �

relates to the above ratio via 10 log
��

P
�
/D

�( �
"

10 log
��

��
�
!10 log

��
D

�( �
.
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Fig. 3. Comparison of e!ective white-noise attack and optimum attack. Left: performance of various watermarks subject to the e!ective
white-noise attack. Right: performance of PSC-compliant and white watermarks subject to either attack. For both graphs, the
original-interference suppression factor is a"1.

The subsequent experiments are brie#y described here. Section 3.3.1 compares the performances of the
e!ective white-noise attack and the optimum attack and shows that the former attack is indeed suboptimal.
Next, Section 3.3.2 examines how the behavior of the optimum attack changes depending on the attack
distortion D

�( �
; the results verify the rule-of-thumb in Section 3.2.2: `At low distortions, add noise; at high

distortions, throw away frequency componentsa. Finally, Sections 3.3.3 and 3.3.4 show the e!ect of
interference from the original and suggest that there is not a unique watermark power spectrum that
performs best over the entire range of attack distortions.

3.3.1. Comparison with ewective white-noise attack
The left-hand graph in Fig. 3 shows the capacity}distortion curves for various watermarks after the

e!ective white-noise attack of Section 3.1 when a"1. Clearly, the PSC-compliant watermark is most robust
against this attack. However, the right-hand graph shows the performance of PSC-compliant and white
watermarks after either the e!ective white-noise attack or the optimum attack when a"1. It is evident that
the PSC-compliant watermark is not most robust over the entire range ofD

�( �
; the white watermark performs

much better at low distortions. By fully exploiting the potential power advantage, the optimum attack is
clearly more e!ective than the e!ective white-noise attack. Against the PSC-compliant watermark, the
optimum attack consistently reduces capacity by roughly one order of magnitude over the e!ective
white-noise attack. Against the white watermark, the attacks perform comparably at low distortions, but at
high distortions the advantage of the optimum attack becomes obvious.

3.3.2. Examples of attack behavior
The preceding results show that the white watermark resists the optimum attack better than the

PSC-compliant watermark at lower distortions, while the situation is reversed at higher distortions. Here we
provide some explanations for this behavior. We employ the interpretation of the e!ective watermark w

	
[n]

and noise n
	
[n] in Section 2.4, as well as another interpretation presented here.

The purpose of this interpretation is to help visualize the relative powers of the watermark and attack. As
remarked in Section 3.1, an ideal receiver could apply the inverse "lter g��[ no ] to z[ no ] (Eq. (3)) and then
decode from z

�
[ no ] (Eq. (9)). Additionally, the receiver could apply an ideal whitening "lter with transfer
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function H(�o )"(��
�
/�

��
(�o ))��� and impulse response h[ no ]. Thus, de"ne z�[ no ]"h[ no ]*g��[ no ]*z[ no ]"

w
�
[ no ]#n

�
[ no ], where w�

[ no ]"h[ no ]*g��[ no ]*g[ no ]*w[ no ] is the whitened, ewective watermark, and
n
�
[ no ]"h[ no ]*g��[ no ]*((1!a)g[ no ]*x[ no ]#v[ no ]) is the whitened, ewective noise. Since G(�o ) may be

zero at some frequencies, w
�
[ no ] has power spectrum

�
����

(�o )"�
��
�
, G(�o )O0,

0, G(�o )"0.
(28)

From Eqs. (15) and (16), when G(�o )"0, �



(�o )"0 as well. Thus, n

�
[ no ] has power spectrum

�
	�	�
(�o )"�

��
�

�
��
(�o )
[(1!a)��

��
(�o )#�G(�o )����




(�o )], G(�o )O0,

0, G(�o )"0.
(29)

Now (7) can be written as

C"

1

(2�)���
�

1

2
log

��1#
�

����
(�o )

�
	�	�
(�o ) �d�o "

1

(2�)���
�

1

2
log

��1#
��
�

�
	�	�
(�o )� d�o , (30)

where �
�
denotes the frequency support of G(�o ) (within �).

Figs. 4 and 5 examine di!erent parts of the attack for low and high distortions. Examples appear for both
white and PSC-compliant watermarks. Four graphs appear for each watermark; all graphs in these "gures
use a decibel scale for the vertical axis. The upper-left graph shows the attack components A(�), G(�), and
�




(�). The upper-right graph shows the power spectrum �

��
(�) of the error e[n]"y( [n]!x[n]. The

lower-left graph contains the power spectra of the e!ective watermark w
	
[n] and noise n

	
[n], and the

lower-right graph shows their whitened versions, w
�
[n] and n

�
[n]; in the latter graph, it is easier to see the

attacker's power advantage relative to the watermark.
Fig. 4 shows the attack at low distortion, D

�( �
"6 dB; the white watermark has C"0.189, and the

PSC-compliant watermark has C"0.0519. For both watermarks, G(�)+A(�)+1, ∀�, and �



(�) has

approximately the same shape as �
��
(�). The optimum attack primarily functions by properly shaping

�



(�). The shape of �

��
(�) is similar to that of �




(�), which shows that the distortion is mainly due to the

additive noise v[n]. Against the white watermark, the lower set of graphs show that the e!ective noise power
spectrum is nearly #at and about 6 dB greater than the watermark power spectrum at all frequencies; the
attack must distribute the noise power evenly over all frequencies and cannot gain a substantial power
advantage over any frequency range. Against the PSC-compliant watermark, �

				
(�) adapts the watermark

power spectrum to make �
	�	�
(�) about 10}17 dB greater than �

����
(�) at most frequencies; the attack

gains a large power advantage except in a small region around the origin, where the watermark power
spectrum �

��
(�) is concentrated. In this way, the white watermark reaches a higher capacity than the

PSC-compliant one.
Fig. 5 shows the behavior at high distortion, D

�( �
"24 dB; now C"2.05�10�� for the white water-

mark, and C"2.19�10�� for the PSC-compliant watermark. The optimum attack discards frequency
components: G(�)"0 for ���'�

�
. The graph of �

��
(�) shows that the distortion is dominated by the

portions of the original that have been "ltered out. Against the white watermark, the "lter has �
�
+0.05�;

most of the watermark (and original) is simply discarded. Over the interval [!�
�
,�

�
], �

	�	�
(�) is 32}38 dB

greater than �
����

(�). Against the PSC-compliant watermark, �
�
+0.15�; this larger frequency support

indicates that more of the watermark passes through the "lter G(�). In addition, �
	�	�
(�) is only 20}30 dB

greater than �
����

(�) over most of the interval [!�
�
,�

�
]. Thus, after "ltering by G(�), more watermark

power remains for the PSC-compliant watermark than for the white one, and the former achieves a higher
capacity.
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Fig. 4. Example of attack behavior for white and PSC-compliant watermarks after optimum attack at low distortion. The original-
interference suppression factor is a"1. All power spectra are shown with a decibel scale.

1156 J.K. Su et al. / Signal Processing 81 (2001) 1141}1175



Fig. 5. Example of attack behavior for white and PSC-compliant watermarks after optimum attack at high distortion. The original-
interference suppression factor is a"1.

These examples agree with the rule-of-thumb in Section 3.2.2: `At low distortions, add noise; at high
distortions, throw away frequency componentsa. They help explain why the best-performing watermark
power spectrum is likely not unique over the entire range of D

�( �
. The white watermark better resists additive

noise, while the PSC-compliant watermark better resists frequency-selective "ltering.
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Fig. 6. Performance of various "xed watermark power spectra subject to the optimum attack.

3.3.3. Reception-with-original/optimal blind reception
The left-hand graph in Fig. 6 shows the theoretical performance of various watermarks when subjected to

the optimum attack with a"1. The capacity}distortion curves may appear not to be convex, but this is
a visual e!ect due to the logarithmic capacity scale and decibel distortion scale. When drawn with linear
scales, the curves are convex but di$cult to distinguish.
Again, we immediately see that the PSC-compliant watermark is not optimum for all D

�( �
. None of the

watermarks tested has the best performance over the entire range of D
�( �
. At low distortions, the white

watermark performs best; at high distortions, the PSC-compliant watermark performs best; for a middle
range of distortions, the lowpass watermark performs better than both the white and PSC-compliant ones.
This behavior suggests that there may be no unique optimum watermark power spectrum that maximizes
C over all D

�( �
.

3.3.4. Interference from the original
The right-hand graph in Fig. 6 shows performance curves for the watermarks when a"0. Generally, the

white watermark performs best at low to medium distortions, while the PSC-compliant watermark performs
best at high distortions.
For low to medium distortions, the PSC-compliant watermark has the poorest performance and the white

watermark has the best performance. We can explain this behavior as follows. The PSC-compliant
watermark power spectrum has the same shape as �

��
(�), so it su!ers most from interference due to the

original. The bandpass and highpass watermarks concentrate their power away from the frequencies where
�

��
(�) is largest; these watermarks outperform the PSC-compliant watermark, in contrast to case a"1

(left-hand graph in Fig. 6). Yet because they concentrate power in the middle or high frequencies, these
watermarks are easier to attack than the white watermark.
However, at high distortions, most of the power of the bandpass and highpass watermarks is discarded by

the attack; the same occurs for the white watermark, although to a lesser extent. The shape of the
PSC-compliant watermark power spectrum allows more of its power to survive the attack. In a sense, the
original shields the PSC-compliant watermark because the attack cannot discard the frequency components
where the watermark power is concentrated without also destroying the original.
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4. Optimized defense

Finding a defense in the presence of the optimum attack is extremely di$cult. The owner should select
�

��
(�o ) to maximize D

�( �
while satisfying constraints D

��
"D

	��	

and C"C

�
(Problem 2). However,

D
�( �
and C depend upon �

��
(�o ) in a complicated manner via A(�o ). An analytic solution for �

��
(�o ) may be

impossible to "nd. Also, the experimental results of Section 3.3 suggest that there may not be a unique�
��
(�o )

that solves the owner's problem over all possible pairs (D
�( �
,C

�
).

4.1. Piecewise-constant approximation

In an attempt to learn more about the possible solution, we make some approximations that may allow us
to "nd �

��
(�o ) numerically. Divide � into N non-overlapping, equal-support subsets that cover �. Hence,

each region has a total support size of (2�)�/N. We assume that �F(�o )� and all power spectra are constant over
each subset. We index the N subsets from 1 to N, so that when �o lies in the nth subset, �

��
(�o )"X

	
*0,

�
��
(�o )"=	

*0, and �F(�o )�"F
	
'0. We often denote the piecewise-constant quantities asN-vectors. For

example, �
��
(�o ) is represented by="[=

�
=

�
2=

�
].

Consequently, A(�o ), G(�o ), and �



(�o ) are also constant over each subset; the corresponding values are,

respectively, denoted byA
	
,G

	
, and<

	
. We may therefore view each subset as an independent subchannel, so

that we haveN parallel subchannels. The integrals involvingD
��
, D

�( �
, and C can be replaced by summations.

Eqs. (5), (22) and (24) become

D
��

"

1

N

�
�
	��

F�
	
=

	
, (31)

D
�( �

"P
�
!

1

N

�
�
	��

F�
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X�
	

X
	
#=

	

, (32)

C"

1

N

�
�
	��

1

2
log

��1#
A

	
=

	
X

	
#=

	
!A

	
(a(2!a)X

	
#=

	
)�. (33)

4.2. Description of optimization algorithms

We have implemented three iterative numerical methods to optimize the watermark vector=. The "rst
uses a greedy marginal-analysis (GMA) algorithm, the second employs simulated annealing (SA), and the third
uses `greedya annealing (GA) [50]. A brief description of the algorithms follows; more details are given in
Appendix E.
Let D

	��	

and C

�
be given, so D

�( �
should be maximized. An initial vector = that satis"es D

	��	

is

selected; we choose= to distribute the embedding distortion evenly over all N subchannels. During each
iteration,= is perturbed slightly, and the attack is re-optimized. Attack re-optimization can be performed
e$ciently because C(�) is a decreasing function of � (Section 3.2.1). Hence, a bisection search can be used to
"nd �H such that �C(�H)!C

�
�/C

�
(. Once �H has been found, D

�( �
(�H) can be computed. When the

perturbations no longer produce increases in D
�( �
, the algorithms stop. The algorithms all operate in this way

but di!er in the way= is perturbed and the stopping criterion.

4.3. Experimental results

In these experiments, we used the ARmodels described in Section 3.3 and approximated the power spectra
usingN"64 subchannels. In our initial experiments, we found that the results produced by the SA and GA
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Fig. 7. Performance of PSC-compliant, white, and optimized watermarks subject to the optimum attack.

methods were almost identical, but the SA algorithms took much longer to converge. For this reason, we
only present results for the GMA, GA/normal, and GA/scaled methods here.

4.3.1. Reception-with-original/optimal blind reception
The left-hand graph of Fig. 7 shows the results for optimized watermark power spectra with a"1. The

optimization algorithms gave nearly identical capacity}distortion curves. The greedy nature of the algo-
rithms sometimes caused them to become trapped in local maxima, but overall they performed well. It is
evident that a white watermark performs nearly as well as the optimized watermarks at low distortions, while
a PSC-compliant watermark performs almost as well at high distortions. These results con"rm that there is
not a unique optimum defense for all attack distortions.
Fig. 8 shows examples of the optimized watermark power spectra produced by the optimization methods

at three di!erent attack distortions (D
�( �

"6,15, and 24 dB); the corresponding capacities appear in the table
in the "gure. The white and PSC-compliant power spectra appear for comparison. At 6 dB, the upper plot
shows that all three optimized watermarks are nearly white. At 15 dB, the middle plot demonstrates that the
optimized power spectra reach a compromise between the white and PSC-compliant power spectra. The
optimized power spectra are similar to the power spectrum of the lowpass ARmodel, which explains its good
performance at medium distortions in Section 3.3.3 and Fig. 6. Lastly, at 24 dB, the optimized watermark
power spectra are very similar to the PSC-compliant one. These results agree with the discussion in Section
3.3.2, and we have a rule-of-thumb for the defense: At low distortions, white watermarks perform well; at high
distortions, PSC-compliant watermarks perform well.
Lastly, observe that at high distortion (24 dB), the optimized watermark power spectra are not zero at high

frequencies, even though the attack discards these frequency components. A small amount of watermark
power remains in these frequency components, which corresponds to the requirement =�

	
*o, ∀n, in the

optimization algorithms (see Appendix E). It would appear that performance could be improved by putting
all of the watermark power in the frequency components that are not discarded by the attack. However, the
attack would re-optimize itself and no longer discard frequency components where the watermark power was
zero. The attack would no longer need to incur large distortions while reducingC; in particular,D

�( �����
could

become less than P
�
. By leaving a small amount of its power at high frequencies, the optimized watermark

hasW"	 and forces the attack to discard these frequency components and incur additional distortion.
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Fig. 8. Example optimized watermark power spectra for selected attack distortions D
�( �
when a"1 (reception-with-original/optimal

blind reception). Results for GMA (solid curve), GA/normal (dashed curve), and GA/scaled (dotted curve) are shown. For reference, thin
curves corresponding to white (dotted) and PSC-compliant (solid) power spectra are also given. The accompanying table gives the
corresponding capacity values C.

4.3.2. Interference from the original
Experiments were also conducted for the case a"0, corresponding to conventional blind reception when

no knowledge of the original is exploited by the watermarking system. Now the original x[n] acts like
high-power, low-frequency noise, so the original signal's power spectrum �

��
(�) forms a large portion of the

e!ective noise power spectrum �
				
(�) (Section 2.4). The resulting capacity}distortion curves appear in the

right-hand graph of Fig. 7. The GMA algorithm occasionally became trapped, but the GA methods gave
consistently good performance. At low distortions, the white watermark again performs close to the optimized
watermarks, while the PSC-compliant watermark does so at high distortions. However, the curves show that,
unlike the case a"1, optimizing the watermark power spectrum results in additional improvement.
Fig. 9 shows the optimized watermark power spectra for D

�( �
"6,15, and 24 dB and the corresponding

capacities. The power spectra re#ect a compromise between resisting the attack and water "lling to avoid
interference from �

��
(�). At low distortion, �

��
(�) dominates �

				
(�). The optimized watermark power

spectra have roughly the same shape as �
��
(�) (so they appear white relative to �

				
(�)), but they place very

little power at the frequencies where �
��
(�) is largest (so they avoid most of the original-signal interference).

As the attack distortion becomes larger, the optimized watermarks become more like a PSC-compliant
watermark because the attack begins to discard the frequency components where �

��
(�) is not concentrated.

Although �
��
(�) interferes with watermark reception, it also acts like a shield that prevents the low-

frequency portions of the watermarks from being "ltered out, as suggested in Section 3.3.4.

4.3.3. Comparison of blind schemes
This section looks at the potential capacity improvement in blind watermarking when knowledge

of the original signal is exploited during watermark embedding, rather than using a conventional blind
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Fig. 9. Example optimized watermark power spectra for selected attack distortions D
�( �
when a"0 (conventional blind reception).

Results for GMA (solid curve), GA/normal (dashed curve), and GA/scaled (dotted curve) are shown. For reference, thin curves
corresponding to white (dotted) and PSC-compliant (solid) power spectra are also given. The accompanying table gives the correspond-
ing capacity values C.

watermarking scheme that treats the original as noise. The left-hand graph in Fig. 10 displays the
capacity}distortion curves for the optimized watermarks produced by the GA/scaled algorithm for four
di!erent values of the original-interference suppression factor a: 0 (conventional blind reception), 0.2929
(50% original-interference power suppression), 0.6838 (90% power suppression), and 1 (optimal blind
reception). It is clear that a suboptimal blind watermarking scheme that suppresses some of the original-
interference power can achieve a substantial increase in capacity. Promising methods for practical schemes
may be found in [8,10,11,16,38].
The right-hand graph in Fig. 10 shows the ratioC

�{
/C

�{
, whereC

�{
denotes the capacity when p percent

of the original-interference power is suppressed. For D
�( �

(10 dB, C
��{

is about 1.8 times C
�{
, C

��{
about

3}7 times, and C
���{

is 7}148 times (not shown). For 10 dB)D
�( �

)25 dB, the increases are more modest;
the capacities have the approximate ratio C

���{
:C

��{
:C

��{
:C

�{
+6:3:1.5:1. At higher distortions, there is

still some room for improvement over conventional blind reception, but C
���{

is itself very small (less than
10��). In applications where communication even at very high distortions is necessary, a conventional blind
watermarking scheme may remain a practical choice. However, when the number of samples is limited (e.g.,
image watermarking), even an optimal scheme may not be able to communicate su$cient information at
high distortions.

4.3.4. Comparison with memoryless case
It is also worthwhile to compare performance for a correlated original and for a white or memoryless

original, for which Eq. (13) gives a closed-form relationship betweenC and D
�( �
. Of course, in the memoryless

case, there are no frequencies where the optimum attack or optimized defense can gain a power advantage.
We now show that memory can signi"cantly a!ect watermark capacity.
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Fig. 10. Performance comparison for blind watermarking schemes depending upon the original-interference suppression factor a.

Fig. 11. Performance comparison for memoryless original x[ no ] and lowpass original x[ no ] (AR(1), a�"0.95).

Fig. 11 shows the capacity}distortion curves for lowpass (AR(1), a
�
"0.95) and memoryless original

signals. Consider low distortions. When a"1 (left-hand graph), the curves are almost identical. This
behavior can be explained by recalling that, for the colored original in this distortion range, the best
watermarks are almost white, and the optimum attack mainly operates by adding nearly white noise. When
a"0 (right-hand graph), watermark capacity with a colored original is much greater than with a white
original. Recall that the optimized watermarks do not place much power at frequencies where�

��
(�) is large,

but they cannot do this in the memoryless case, where �
��
(�) is #at.

For either a"0 or 1 at higher distortions, watermark capacity with a memoryless original is signi"cantly
greater than that with a colored original. When the original is colored, the attack can exploit a power
advantage at frequencies where �

��
(�) is small and eventually discard these frequency components when the

distortion becomes large. This is not possible in the memoryless case.
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Fig. 12. Performance of various attacks and their defenses. The
original-interference suppression factor a"1.

Fig. 13. Piecewise-constant original power spectrum�
��
(�) and

frequency-weighting function �F(�)�� used in experiments with
frequency-weighted distortion.

4.3.5. Comparison with suboptimal attacks
This section compares the performance of three di!erent attacks and their respective defenses.

For simplicity, we employ MSE distortion and assume a"1 (reception-with-original/optimal blind
reception). First, we consider an additive-noise attack, consisting only of ACGN v[ no ], so
y( [ no ]"x[ no ]#w[ no ]#v[ no ]. It is clear that such an attack is suboptimal, but this model has been used
frequently in the watermarking literature. For this attack, D

�( �
"��

�
#��



. Then the best watermark has

a white power spectrum; the attack cannot gain a power advantage at any frequency and must use white
noise. Hence, C"�

�
log

�
(1#��

�
/(D

�( �
!��

�
)). Second, we consider the e!ective white-noise attack of Section

3.1. The best defense against this attack requires that �
��
(�o ) satisfy the PSC (12). The capacity}distortion

curve is given by (14). Third, we present the results for the optimum attack of Section 3.2 and the optimized
defense (watermark power spectra) generated by the GA/scaled algorithm described in Section 4.2.
Fig. 12 shows the capacity}distortion curves for the three attacks. At low distortions, the additive-noise

attack provides a fairly accurate approximation to the optimum attack, which functions mainly as additive
noise in this distortion range. As the distortion increases, the capacities predicted by the additive-noise and
e!ective white-noise attack models become erroneously optimistic. At high distortions, the latter anticipates
a capacity 10}50 times greater than that actually produced by the optimum attack; for the former, the
capacity may be overestimated by factors as large as 50, 100, or more. These results demonstrate that neither
of these attack models is adequate when communication must be maintained even at high distortions after
hostile attacks. However, the additive-noise attackmodel may su$ce for applications in which only a modest
amount of distortion must be tolerated or where resistance to hostile attacks is unnecessary.

4.3.6. Frequency-weighted distortion
All of the results presented to this point employ MSE distortion. To observe how the frequency-weighted

MSE a!ects the attack and watermark, we present a few experimental results here. We set
�F(�)��"2.0009/(1#0.5e���)(1#0.5e����). The scale factor of 2.0009 is chosen so that P

�
"10�"��

�
, and

hence the frequency-weighted distortion covers the same range as MSE distortion. A plot of the piecewise-
constant curves that correspond to �

��
(�) and �F(�)�� appear in Fig. 13. This choice of �F(�)�� means that

distortions at the middle frequencies are more perceptible than those at low or high frequencies.
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Examples of the GA/scaled-optimized watermark and the attack behavior appear in Fig. 14 for D
�( �

"6
and 24 dB. The original-interference suppression factor is a"1, and the perceptual embedding distortion is
maintained at D

��
/P

�
"!30 dB. In each set of four graphs, the upper-left graph includes both �

��
(�) and

the frequency-weighted watermark F
��
(�)"�F(�)���

��
(�); likewise, the lower-right graph shows the error

power spectrum �
��
(�) and its frequency-weighted counterpart F

��
(�)"�F(�)���

��
(�).

At low distortion (6 dB), the optimized watermark is not white*unlike the case of MSE distortion*but
the frequency-weighted watermark F

��
(�) is. We say that the latter is perceptually white. The attack "lter

G(�) remains almost #at, but the noise power spectrum �



(�) is now shaped to avoid introducing

excessive power at frequencies where �F(�)�� is large. The power spectra �
����

(�) and �
	�	�
(�) of the e!ective

watermark and noise have almost the same shape. As a result, �
	�	�
(�) is approximately white relative to

�
����

(�); this o!ers a direct analogy to the lower-left graphs in Fig. 4 for MSE distortion. Finally, the
error power spectrum �

��
(�) is also shaped such that its weighted counterpart F

��
(�) has a #at power

spectrum.
At high distortion (24 dB), the optimized watermark power spectrum is roughly PSC-compliant. The

attack discards frequency components, but it cannot discard as many middle frequency components as with
MSE distortion. Next, let F�

��
(�)"�F(�)��(D

	��	

/P

�
)�

��
(�), which corresponds to a frequency-weighted

PSC-complaint watermark power spectrum. F�
��
(�) is drawn as a dotted curve in the upper-left graph. We

also say that F�
��
(�) is perceptually PSC-compliant. Clearly, the frequency-weighted, optimized power

spectrum F
��
(�) closely matches F�

��
(�).

Fig. 15 shows the distortion}capacity curves with this frequency-weightedMSE distortion measure and an
original-interference suppression factor a"1. Three optimized curves are shown, as well as curves for
perceptually white and perceptually PSC-compliant watermarks. The curves show that the perceptually
white watermark performs nearly optimally at low distortions, and the perceptually PSC-complaint water-
mark performs nearly optimally at high distortions.
Based on these results, we can extend the observations for MSE distortion (e.g., Section 4.3.1) to

frequency-weightedMSE in a simple way to obtain the following rule-of-thumb: At low perceptual distortions,
a perceptually white watermark performs nearly optimally, while at high perceptual distortions, a perceptually
PSC-compliant watermark performs nearly optimally.

5. Conclusions and remarks

5.1. Summary and conclusions

We have analyzed the theoretical performance of watermarks and employed a well-de"ned robustness
criterion that measures watermark capacity and attack distortion.Watermarking was viewed as communica-
tion over a hostile channel, where attacks take place. Our attack channel model consisted of LSI "ltering and
additive colored Gaussian noise. In a conventional additive-noise channel, communication is most di$cult
when the noise is white and Gaussian. This observation inspired the investigation of an e!ective white-noise
attack. It was shown that the best defense (watermark power spectrum) against this attack results when
a power-spectrum condition (PSC) is ful"lled. The PSC states that the watermark power spectrum should be
directly proportional to the power spectrum of the original signal; in other words, `the watermark should look
like the originala in a statistical sense.
However, unlike conventional channels, the hostile attack channel is not "xed but adapts to the

watermark; the attacker, not the owner, has `the last worda. The optimum attack was derived and shown to
be superior to the e!ective white-noise attack. The optimum attack is di$cult to describe exactly, but its
behavior may be roughly described by a rule-of-thumb: `At low attack distortions (high capacities), add noise;
at high attack distortions (low capacities), throw away frequency componentsa. Experiments demonstrated that
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Fig. 14. Example optimized watermark power spectra from GA/scaled algorithm and attack behavior for frequency-weighted
distortion. The frequency-weighted counterpart of �

��
(�), F

��
(�)"�F(�)���

��
(�), appears in the upper-left graph for the two

distortions shown; for the case D
�( �

"24 dB, the frequency-weighted PSC-compliant spectrum F�
��
(�) is also shown as a dotted curve.

The frequency-weighted version of the error power spectrum �
��
(�), F

��
(�)"�F(�)���

��
(�), appears in the lower-right graph for each

distortion. The original-interference suppression factor is a"1.
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Fig. 15. Performance of PSC-compliant, white, and optimized watermarks subject to the optimum attack. The original-interference
suppression factor a"1. The distortion measure is frequency-weighted MSE.

the PSC is not always the best defense against this attack; they also showed that there is no unique optimum
watermark power spectrum over the entire range of attack distortions.
Next, an optimized defense (watermark power spectrum) against the optimum attack was investigated.

Because of di$culties in "nding an analytical solution, and because the defense is intimately tied to the
attack, numerical optimization methods were applied. Like the optimum attack, the optimized defense is
di$cult to describe precisely. However, experimental results with the MSE distortion measure produced
a rule-of-thumb for the defense: `White watermarks perform nearly optimally at low distortion, and PSC-
compliant watermarks perform nearly optimally at high distortionsa. These results agree with the description of
the attack behavior because a white watermark resists additive noise well, while a PSC-compliant watermark
resists frequency-selective "ltering well. For applications where only mild attack distortions must be
tolerated, a white watermark is preferable because it should provide a higher capacity than a PSC-compliant
watermark. For applications where communication must be possible even at high attack distortions,
a PSC-compliant watermark is more suitable because it should o!er a greater capacity than a white
watermark.
Also, the optimized watermarks distribute their power over the entire frequency support of the original

signal's power spectrum. They leave a small amount of power at frequency components where the original
power is small. Doing so forces the attack to spread its e!ort over all frequencies.
When the receiver fails to suppress all of the interference from the original, the original acts like additional

channel noise. The optimized watermark power spectrum strikes a balance between resisting the attack,
which is hostile and adaptive, and water "lling to resist original-signal interference, which is coincidental and
passive. Experiments with partial original-interference suppression, likely in practical blind watermarking
schemes, indicate that signi"cant capacity gains over conventional blind reception are possible.
Additional experiments indicate that there can be a signi"cant performance di!erence between the cases of

a memoryless original and an original with memory. When the original signal is highly correlated, modeling
it as memoryless may overestimate the capacity of the watermarking system. Likewise, modeling the attack
as additive noise or e!ective white noise can lead to a large discrepancy between predicted and actual
capacity}distortion performance. The optimum attack is more powerful than either of these attacks.
Finally, experiments with frequency-weighted MSE distortion generalize the results for MSE distortion

in a simple way: `At low perceptual distortions, perceptually white watermarks have nearly optimal
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performance, and at high perceptual distortions, perceptually PSC-compliant watermarks have nearly
optimal performancea. For applications where only mild attacks must be resisted, perceptually white
watermarks are desirable. For robustness at high perceptual distortions, these observations strongly
encourage the heuristic rule of Cox et al. [15] and others (e.g. [24,47,49]) that the watermark should be
embedded in the `perceptually signi"cant frequency componentsa.

5.2. Remarks and practical implications

Because of the theoretical nature of this paper, some remarks on its signi"cance for practical watermarking
schemes are in order. Many of the assumptions in the analysis are ideal; nevertheless, the results can also
provide helpful insights and useful tools for constructing and evaluating practical watermarking systems.
These remarks are of a more speculative nature than the rest of this paper.
First, we have applied Kerckho!'s principle from both the owner's and attacker's viewpoints. Of

course, the former viewpoint should be used in the responsible design of a watermarking scheme: The
designer should be pessimistic and assume that the attacker has complete knowledge of the statistics of the
original and the watermark. However, the latter viewpoint is optimistic: The owner is assumed to have
complete knowledge of the attack "lter and noise statistics. Using this knowledge, the watermark receiver
compensates for the attack. In practice, it is unlikely that the watermark receiver will be fortunate enough
to have such accurate knowledge. Consequently, the results in this paper represent upper bounds on
performance.
Second, the results (e.g., see Figs. 7 and 15) indicate very low capacities when the attack distortion becomes

large. At such distortions, thousands of samples may be required to communicate a single information bit.
One should be careful not to draw any sweeping conclusions from our theoretical analysis, but it does suggest
that it could be di$cult or even impossible to communicate a signi"cant amount of information if the attack
distortion is high and the number of signal samples is severely limited. Such a conclusion could have
important consequences for practical image and audio watermarking schemes. In contrast, the number of
available samples is virtually unlimited in video watermarking; however, synchronization and production
costs could be problematic for such long signals.
Third, the analysis shows that there is not a unique watermark power spectrum that provides the best

performance over the entire range of attack distortons. This result implies an unavoidable `you can't have it
alla trade-o!: A single watermarking strategy (e.g., white or PSC-compliant) cannot achieve the highest
communication rate or information payload at both low and high distortions. For example, if a system uses
a PSC-compliant watermark to maintain communication at high distortion, but the attack is less severe than
anticipated, then the payload will be lower than if the system had employed a white watermark.
This trade-o! does not mean that PSC-compliant watermarks are superior to white watermarks, or vice

versa. Rather, it means that the choice of watermark power spectrum is highly application-dependent. For
example, consider applications like embedding meta-information or broadcast monitoring. It may not be
important if the meta-information cannot be retrieved after mild signal degradations. Likewise, a broadcast-
ing site is unlikely to introduce much distortion intentionally, and it does not matter if consumers later
process the watermarked data after broadcast. For such applications, a white watermark may be appropri-
ate. However, in applications such as access control and the protection of intellectual property rights, the
hidden information should also be decodable even at extremely high distortions. PSC-compliant watermarks
are more suitable for these applications.
Fourth, although ordinary MSE and frequency-weighted MSE are imperfect distortion measures for real

data, the analysis may still provide a useful guideline for practical watermarking schemes that employ more
accurate perceptual models. A watermark whose embedding distortion is spread fairly uniformly over the
original signal would be analogous to a perceptually white watermark; it would likely provide a large
payload but low robustness. On the other hand, a watermark whose embedding distortion is concentrated

1168 J.K. Su et al. / Signal Processing 81 (2001) 1141}1175



in the perceptually signi"cant portions of the original signal would be analogous to a perceptually
PSC-compliant watermark; it would probably yield a small payload but high robustness.
Finally, we remark that the presented optimum attack is not a purely theoretical entity; it could actually be

implemented by an attacker. Even in practice, an attacker may be able to acquire reasonably accurate
knowledge of the statistics of the original and watermark signals, and then the attack could easily be applied.
The optimum attack may thus be a useful tool for evaluating practical watermarking schemes; it has recently
been applied to an image watermarking scheme in [20].
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Appendix A. E4ective white-noise attack

For this attack, the attacker should set

�
	�	�
(�o )"

��
	�

��
�

�
��
(�o ). (A.1)

Then C"�
�
log

�
(1#��

�
/��

	�
). Since ��

�
is "xed, the attacker can ensure that C"C

�
by selecting ��

	�
appro-

priately. From (10), it follows that

�



(�o )"�G(�o )���

��
	�

��
�

�
��
(�o )!(1!a)��

��
(�o )�, (A.2)

so that once G(�o ) is known, �



(�o ) is also speci"ed. Regardless of G(�o ), to ensure that �




(�o ) remains

non-negative at all frequencies, ��
	�
is restricted by

��
	�

*(1!a)���
�
max
�o 
W

�
��
(�o )

�
��
(�o )
. (A.3)

The distortion expression (5) becomes

D
�( �

"

1

(2�)��� �F(�o )��[(�G(�o )!1��!(1!a)��G(�o )��)���
(�o )#�G(�o )��K�

��
(�o )] d�o , (A.4)

whereK"1#��
	�
/��

�
. WriteG(�o ) in magnitude-phase form,G(�o )"�G(�o )�e����o �, and substitute this form into

(A.4) to obtain

D
�( �

"

1

(2�)��� �F(�o )��[(�G(�o )��!2�G(�o )�cos �(�o )#1!(1!a)��G(�o )��)���
(�o )# �G(�o )��K�

��
(�o )] d�o .

(A.5)

Let D�
�( �
denote the integrand of (A.5). To minimizeD

�( �
, compute the partial derivatives of D�

�( �
with respect

to �(�o ) and �G(�o )�, and set them equal to zero. First,

�D�
�( �

��(�o )
"�F(�o )���2�G(�o )�sin �(�o )���

(�o )"0.
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Thus, �(�o )"k�, and cos �(�o )"$1. Second,

�D�
�( �

��G(�o )�
"�F(�o )���[(2�G(�o )�!2 cos �(�o )!2(1!a)��G(�o )�)���

(�o )#2�G(�o )�K�
��
(�o )]"0. (A.6)

Solving (A.6) for �G(�o )� gives

�G(�o )�"
�

��
(�o )

a(2!a)�
��
(�o )#K�

��
(�o )
cos �(�o ).

Since �G(�o )�*0, cos �(�o )"1; hence, G(�o )"�G(�o )�, and choose �(�o )"0, ∀�o . Thus, the solution for G(�o ) is

G(�o )"
�

��
(�o )

a(2!a)�
��
(�o )#K�

��
(�o )
. (A.7)

�



(�o ) can then be computed from (A.2).
The attack distortion (A.4) becomes

D
�( �

"P
�
!

1

(2�)��� �F(�o )��
��

��
(�o )

a(2!a)�
��
(�o )#K�

��
(�o )
d�o . (A.8)

Appendix B. Power-spectrum condition

Let G(�o ) be given by (A.7). Then apply the calculus of variations with the Lagrangian

J"�F(�o )��[((G(�o )!1)�!(1!a)�G�(�o ))���
(�o )#G�(�o )K�

��
(�o )]#��F(�o )�����

(�o ).

Next,

dJ

d�
��
(�o )

"

�F(�o )��K��
��
(�o )

(a(2!a)�
��
(�o )#K�

��
(�o ))�

#��F(�o )��"0.

Solving this equation for �
��
(�o ) yields

�
��
(�o )"

1

�K�$
1

�!�
!

a(2!a)

�K ����
(�o ). (B.1)

It is already evident that �
��
(�o ) is directly proportional to �

��
(�o ).

For completeness, continue analysis to verify that �
��
(�o ) is always a valid power spectrum. Since power

spectra are real, select �(0. Since power spectra are non-negative, choose the plus-case and then set

1/�!�!a(2!a)/�K*0. Solving for � gives �*!K/a�(2!a)�. Hence, 0(!�)K/a�(2!a)�, and
let !�"��K/a�(2!a)�, where � must satisfy 0(�)1 for �

��
(�o ) to be valid. Then �

��
(�o ) becomes

�
��
(�o )"

a(2!a)

K �
1!�

� ����
(�o )"

��
�

��
�

�
��
(�o ).

Solving for � gives

�"

a(2!a)��
�

a(2!a)��
�
#K��

�

.
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Recall 0)a)1 andK"1#��
	�
/��

�
, so � always satis"es 0(�)1. Consequently,�

��
(�o ) in (B.1) is always

a valid power spectrum and is directly proportional to �
��
(�o ).

Appendix C. Capacity expression for e4ective white-noise attack and PSC

Since �
��
(�o ) is PSC-compliant, substitute �

��
(�o )"(��

�
/��

�
)�

��
(�o ) into the distortion expression (A.8),

which yields

D
�( �

"P
�
!

1

(2�)��� �F(�o )��
��

��
(�o )

a(2!a)�
��
(�o )#K(��

�
/��

�
)�

��
(�o )
d�o

"P
�
!

��
�
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#K��

�

�
1

(2�)��� �F(�o )�����
(�o ) d�o "P

��1!
��
�

a(2!a)��
�
#��

�
#��

	�
�, (C.1)

where the last line follows because K"1#��
	�
/��

�
. Next, solve (C.1) for ��

	�
, which produces

��
	�

"

P
�
��
�
!(P

�
!D

�( �
)(a(2!a)��

�
#��

�
)

P
�
!D

�( �

.

The capacity is C"�
�
log

�
(1#��

�
/��

	�
), so write

��
�

��
	�

"

(P
�
!D

�( �
)��

�
P
�
��
�
!(P

�
!D

�( �
)(a(2!a)��

�
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�
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�

P
�
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�
P
�
/��
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"

(P
�
!D

�( �
)(��

�
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�
)P

�
P�

�
!(P

�
!D

�( �
)(a(2!a)P

�
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�
/��

�
)P

�
)
.

Because �
��
(�o ) is PSC-compliant, D	��	


"(��
�
/��

�
)P

�
, and (13) follows.

Appendix D. Optimum attack

Let G(�o )"�G(�o )�e����o �. Write the integrand of D�( �
in (5) as

D�
�( �

"�F(�o )��[(�G(�o )��!2�G(�o )�cos �(�o )#1)�
��
(�o )#�G(�o )�����

(�o )#�



(�o )] ,

and the integrand of C in (7) as C�/ln2, where

C�"
1

2
ln�1#

�G(�o )�����
(�o )

(1!a)��G(�o )�����
(�o )#�




(�o )�.

Then apply the calculus of variations with the Lagrangian J"D�
�( �

#(�/ln 2)C�.
First, we have �J/��(�o )"2�G(�o )�sin �(�o )���

(�o )"0, so �(�o )"k�, and cos �(�o )"$1.
Second, it is useful to compute the partial derivatives of C� before continuing. We "nd

�C�/��



(�o )"!�G(�o )�����

(�o )/2�(�o ), and �C�/��G(�o )�"�G(�o )����
(�o )�



(�o )/�(�o ), where

�(�o )"((1!a)��G(�o )�����
(�o )#�




(�o ))((1!a)��G(�o )�����

(�o )#�



(�o )#�G(�o )�����

(�o )).

Then

�J

��



(�o )

"�F(�o )��#�
�
ln 2�

�C�
��




(�o )

"�F(�o )��!�
�
ln 2�

�G(�o )�����
(�o )

2�(�o )
"0,
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which we write as

2
�F(�o )��
�G(�o )�

"�
�
ln 2�

�G(�o )����
(�o )

�(�o )
. (D.1)

We multiply both sides of (D.1) by �



(�o ) to obtain

2
�F(�o )���



(�o )
�G(�o )�

"�
�
ln 2�

�G(�o )����
(�o )�



(�o )
�(�o )

"�
�
ln 2�

�C�
��G(�o )�

. (D.2)

Third, we compute

�J

��G(�o )�
"�F(�o )��[(2�G(�o )�!2 cos �(�o ))���

(�o )#2�G(�o )����
(�o )]#�

�
ln 2�

�C�
��G(�o )�

"0.

From (D.2),

2�F(�o )��[(�G(�o )�!cos �(�o ))���
(�o )#�G(�o )����

(�o )]#2
�F(�o )���



(�o )
�G(�o )�

"0.

Solving for �



(�o ) produces

�



(�o )"�G(�o )�cos �(�o )���

(�o )!�G(�o )��(���
(�o )#�

��
(�o ))*0, (D.3)

where the inequality has been added to ensure that �



(�o ) is a valid power spectrum.

To satisfy this inequality, we must have cos �(�o )"#1, ∀�o , so G(�o )"�G(�o )�*0, ∀�o . We choose
�(�o )"0, ∀�o . Eq. (D.3) yields G(�o ))�

��
(�o )/(���

(�o )#�
��
(�o )). We can then write G(�o ) as in (15).

Substituting (15) into (D.3) gives �



(�o ) in (16).

It remains to "nd an expression for A(�o ). We substitute (15) and (16) into (D.1). After some algebra,
we "nd

�F����
��
[(1!a)�A�

��
#(1!A)(�

��
#�

��
)][(1!a)�A�

��
#(1!A)(�

��
#�

��
)#A�

��
]

"

�
2 ln 2

�
��
(�

��
#�

��
)�, (D.4)

where we have omitted the frequency variable �o .
For 0(a)1, Eq. (D.4) can be written as a quadratic expression in A(�o ). It has roots

A(�o )"�1#
�

��
2a(2!a)�

��

$

���
��

��
��

#(2�/ln 2)a(2!a)�
��

�
��
(a(2!a)�

��
#�

��
)�F���

2a(2!a)��
��

�
��

�
��

#�
��

a(2!a)�
��

#�
��
�. (D.5)

We select the minus-case since otherwise A(�o )'1, ∀�o . Since 0)A(�o ))1, ∀�o , as well, to satisfy the
Kuhn-Tucker conditions [53], we impose the cl[ ) ] operator (18) and arrive at (20).
In the case a"0, (D.5) is not well-de"ned. Substitute a"0 into (D.4), which produces a linear equation in

A(�o ); imposing the constraint A(�o )*0, ∀�o , yields (19).
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Appendix E. Optimization algorithms

We outline the optimization algorithms for the case where D
	��	


and C
�
are given and D

�( �
should be

maximized. They can easily be modi"ed to replace the capacity constraint with an attack-distortion
constraint D

�( �
"D

�
and maximize C (see Section 2.5).

Initialization: The algorithms require the N-vectors X and F, and the scalars D
	��	


and C
�
. The initial

watermarkN-vector= should be selected such that=
	
*0, ∀n, and (1/N)��

	��
F�
	
=

	
"D

	��	

; the latter

condition enforces the embedding distortion constraint. Typically, we set=
	
"D

	��	

/F�

	
, ∀n, so that the

initial embedding distortion is distributed evenly over all subchannels.
Bisection search for optimum attack: Given=, it is necessary to "nd the optimum attack that minimizes

D
�( �
such that the capacity C"C

�
. With all other parameters "xed, the attack is parameterized by �. Because

C(�) is a decreasing function of � (Section 3.2.1), a simple bisection search can be employed to "nd �H such
that �C(�H)!C

�
�/C

�
(o

�
for some small tolerance o

�
'0. Once �H has been determined, it is a simple matter

to compute the corresponding attack distortion D
�( �
(�H).

If the alternate approach to the attack is desired (minimize C such that D
�( �

"D
�
), a bisection search can

also be used since D
�( �
(�) is an increasing function of �. After �H has been found such that

�D
�( �
(�H)!D

�
�/D

�
(o


, for some o


'0, the corresponding capacity C(�H) can be computed.

Perturbation: When perturbing the watermark vector=, it is useful to work with the embedding distortion
vector D, whose elements are D

	
"F�

	
=

	
, ∀n. The perturbed watermark distortion vector D� is given by

D�"D#�D, where �D is the perturbation vector with elements �D
	
. Then the perturbed watermark=�

has elements=�
	
"D�

	
/F�

	
, ∀n. To ful"ll the constraint on D

	��	

, �D must satisfy (1/N)��

	��
�D

	
"0. To

ensure that=�
	
*0, ∀n, the elements �D

	
must also satisfy �D

	
*!D

	
, ∀n. In actuality,=�

	
is restricted

such that =�
	
*o, where o is a small, positive number (e.g., o"10�	). An explanation for this restriction

appears in Section 4.3.1.
In the following, ¹ corresponds to temperature in the annealing schedule. For the GMA algorithm, one

element �D
	
is set equal to $¹, and the other (N!1) elements of �D are set to G¹/(N!1). For the

annealing methods, there are two di!erent ways for generating perturbations. In the "rst method, referred to
as SA/normal or GA/normal, �D is produced by concatenating N random deviates from a normally
distributed random-number generator with standard deviation ¹. In the second method, SA/scaled or
GA/scaled, the elements of �D are �D

	
"o

	
D

	
, where o

	
is the output of a uniform-[!¹,¹] random-

number generator and 0(¹(1; hence D�
	
"(1#o

	
)D

	
.

Decision: After a perturbation has been made, the bisection search is used to re-optimize the attack and
"nd �� such that �C�(��)!C

�
�/C

�
(o

�
; then D�

�( �
(��) is computed. Each algorithm must decide whether or not

to accept the perturbed watermark=� or keep the previous watermark=.
The GMA algorithm tries all single-subchannel perturbations and selects the one that produced the

greatest value of D�
�( �

'D
�( �
; then=Q=� and D

�( �
QD�

�( �
. If all single-subchannel perturbations result in

D�
�( �

(D
�( �
, the algorithm stops.

The SA algorithms use the Metropolis decision rule [37]. If D�
�( �

'D
�( �
, the perturbation is

accepted, and =Q=�, D
�( �

QD�
�( �
. Otherwise, the algorithm computes p"exp[(D�

�( �
!D

�( �
)/K¹],

where K'0 is the temperature constant, and picks a random number r uniformly distributed
over [0,1]. If r(p, the perturbation is accepted and = and D

�( �
are updated; if r*p, the perturbation is

rejected.
The GA algorithms make a random perturbation, but only accept the perturbation if D�

�( �
'D

�( �
. This is

analogous to setting K"0 in the corresponding SA algorithms.
Annealing schedule: All the algorithms, including GMA, employ an annealing schedule that gradually

reduces the temperature¹ according to¹Qc¹, where c3(0,1) is the cooling factor. For a given temperature
¹, many perturbations (typically 100N) are performed before reducing the temperature by c. If none of the
perturbations are accepted at a single temperature, the algorithms stop.
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In the annealing algorithms, if a large number (e.g., 10N) of the perturbations are accepted, ¹ is
immediately reduced. The logic is that the system is `too hota and simply jumping randomly from one state
(watermark vector=) to another; hence, it is reasonable to cool the system prematurely.
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