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ABSTRACT

Blind digital watermarking is the communication of infor-
mation via multimedia host data, where the unmodified host
data is not available to the watermark detector. Many wa-
termarking schemes suffer considerably from the remain-
ing host-signal interference. For the additive white Gaus-
sian case, Costa showed theoretically that interference from
the host can be eliminated. However, the proof involves a
huge, unstructured, random codebook, which is not feasi-
ble in practical systems. We present a suboptimal, practi-
cal scheme that employs a lattice-structured codebook to re-
duce complexity. The performance of the proposed scheme
is compared to the information-theoretic limit and similar
recent proposals.

1. INTRODUCTION

Digital watermarking is the communication of information
by embedding it into multimedia data, called “host data,”
without introducing perceptual changes and receiving it
later. The data with embedded watermark are denoted as
“public data”. The embedded information can be used for
copyright protection or protection against deliberate or coin-
cidental alteration of multimedia data.

For most applications, digital watermarking schemes
must be designed such that the embedded information can
be decoded reliably after common signal processing opera-
tions, and in some cases, even after deliberate attacks, e.g.,
in copy protection applications. In most applications, the
unmodified host signal is not available to the watermark de-
tector. Therefore, many watermarking schemes suffer con-
siderably from the host-signal interference. Using results
from Costa [5], Chen and Wornell [3] have shown that, for
IID Gaussian signals and an additive white Gaussian noise
(AWGN) attack, the theoretical capacity of a blind water-
marking system is equal to that of a receiver with access to
the host signal. The host-signal interference can be elimi-
nated if the host signal is used as side information by the
watermark encoder.

Costa gave a theoretical solution to the communica-
tion problem depicted in Fig. 1. The messagem 2
f1; 2; : : : ;Mg should be transmitted with a power constraint
for the signal~w = [w1; w2; : : : ; wn; : : : ; wN ] of lengthN .
The interfering Gaussian noise sources~x � N (0; �2

x
IN )

and~v � N (0; �2
v
IN ) are not known to the decoder. How-

ever, the encoder knows~x. This problem resembles the blind

watermarking problem, where~x is the host signal, and~v is
noise due to an AWGN attack. Using mean squared error
(MSE) as distortion measurement, the constraint on the wa-
termark embedding distortion�2

w
corresponds to the power

constraint. The decoder must be able to decode the transmit-
ted watermark messagem without having access to the host
signal~x.

DecoderEncoder

~v~x

~wm m̂
��

~s=~x+~w ~y
UN UN

Figure 1. Watermark encoding followed by AWGN attack.

Costa’s solution for the blind watermarking problem is
not practical since a huge random codebook (CB)UN is in-
volved. In this paper, we discuss a watermarking scheme
that is based on Costa’s solution, however, the random CB
is replaced by a lattice-structured CB to reduce complex-
ity. Further, we restrict the discussion to schemes that are
designed independently from a specific host signal distribu-
tion. These schemes can be easily implemented for many
different host signals. We assume IID signals and con-
sider only an AWGN attack. Thus, the communication
scenario is completely described by the watermark-to-noise
ratio WNR= 10 log10 �

2
w
=�2

v
. Extensions to non-white sig-

nals and other attacks are not discussed here. In Section 2.1,
Costa’s approach is briefly reviewed using notation common
for watermarking schemes. Then a watermark embedding
process based on Costa’s idea, but using a simplified CB,
is derived. A performance analysis is given in Section 3
and some extensions and modifications are discussed in Sec-
tion 4.

2. WATERMARKING EXPLOITING
SIDE-INFORMATION AT THE ENCODER

2.1. Capacity-Achieving Blind Watermarking

The main ingredient of Costa’s solution [5] to the transmis-
sion problem shown in Fig. 1 is the design of a specific CB
UN and appropriate encoding process. Here, we summarize
the most important steps of Costa’s approach. More details
appear in [5, 6].
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First of all, a random CB

UN = f~ul = ~wl + �~xl j l 2 f1; 2; : : : ; Lg;

~w � N (0; �2
w
IN ); ~x � N (0; �2

x
IN )g (1)

must be designed, where~w and~x are independent,L =
d2(N�I(u;y)��)e is the size of the CB,I(u;y) is the mutual
information between the CB entries and the received signals,
andN is the codeword length. The CB is partitioned intoM
non-intersecting sub-CBs in such a way that each sub-CB
UNm contains about the same number of sequences. Thus, the
CB can be denoted byUN = UN1 [U

N
2 [� � �[U

N
m [� � �[U

N
M :

This CB is available at the encoder and the decoder.

Assume a host signal~x is given and a watermark mes-
sagem should be transmitted. First, a jointly typical pair
(~u0; ~x) in the sub-CBUNm must be found. This is equiva-
lent to looking for a sequence~u0 such that~w = ~u0 � �~x is
nearly orthogonal to~x. The encoder declares an error if no
such sequence is found. However, the probability of finding
no suitable sequence~u0 vanishes exponentially asN !1.
Second, the public signal is given by~s = ~x + ~w, or equiv-
alently, the signal~w is transmitted over the channel shown
in Fig. 1. Third, the decoder searches the entire CB for a
sequence~u such that(~u; ~y) is jointly typical. An error is de-
clared if more than one or no such sequence is found. Again,
with high probability the decoder will find only one such
sequence, which will be equal to~u0. The indexm̂ of the
sub-CBUm̂ containing~u is the decoded watermark message.
The probability of error averaged over the random choice of
code goes to zero exponentially fast asN !1.

Costa showed that for the CB (1) with

� = �� =
�2
w

�2
w
+ �2

v

=
1

1 + 10�WNR=10
; (2)

the capacity isC = 1
2 log2(1+�

2
w
=�2

v
), which is equal to the

capacity of the transmission scenario where the host signal is
known to the decoder. Thus, not knowing the host signal at
the decoder does not decrease capacity. Note that the capac-
ity is completely determined by the WNR, and independent
from the host signal power�2

x
.

2.2. Watermarking using Lattice-Structured CBs
The CB sizeL of (1) can become very large, even for mod-
est signal lengthN and size of the watermark alphabet. This
can be easily seen for low channel noise power�2

v
, when� is

close to 1. In this case, the CB (1) must provide a sufficiently
accurate description of any possible host signal~x. Neither
storing the CB (1) nor searching it is practical due to its ran-
dom structure and huge size. Therefore, we propose using
a suboptimal, lattice-structured CB while leaving the main
concept of Costa’s transmission scheme unchanged. Further,
we develop a scheme that is independent from the host sig-
nal distribution, except for the assumption of a reasonably
smooth PDFpx (x) and�2

x
� �2

w
; �2

v
.

2.2.1. Embedding using Scalar Uniform Quantization

We assume that the watermark messagem is encoded into
a sequence~d = [d1; d2; : : : ; dn; : : : ; dN ] of N lettersdn 2
D = f0; 1g, thusm � ~d.

First, theN -dimensional CBUN is structured as product
CBUN = U1ÆU1Æ� � �ÆU1 of a one-dimensional component
CB U1. All component CBs are identical.

Then, the component CBU1 must be separated into two
distinct parts,U1

0 andU1
1 , to allow for the transmission of

dn 2 f0; 1g per signal samplen. Here, we set

U1
0 = fu = k��j k 2 Zg (3)

U1
1 =

�
u = k��+

��

2

���� k 2 Z
�
; (4)

where�;� 2 R
+ are parameters yet to be derived. The

entire composite CBU1 = U1
0 [ U

1
1 can be written as

U1 =

�
u = k��+ d

��

2

���� d 2 f0; 1g; k 2 Z
�
: (5)

Next, the random CB (1) in Costa’s transmission scheme
is replaced by the product CBUN = U1 ÆU1 Æ � � �ÆU1, with
U1 as defined in (5). For embedding the watermark bit se-
quence~d we have to look for a jointly typical pair(~u0; ~x), or
equivalently find a sequence~e = ~w=� = (~u0=�)� ~x which
is nearly orthogonal to~x. For the given scheme, this process
can be reduced to samplewise scalar uniform quantization

un;0
�

= Q

 
xn;

U1
dn

�

!
; (6)

whereQ(�;U) denotes quantization to the CBU , andU1
dn
=�

means scaling all CB entries by1=�. Here, the scaled CB
corresponds to a uniform scalar quantizer with step size�.
Finally, the transmitted watermark signal is given by

~w = ~u0 � �~x = �~e; (7)

where~e = ~u0=�� ~x is equal to the quantization error when
quantizing the host signal~x using the scaled product CB
UN~d =�. Note that it is well-known that the quantization error
~e is almost orthogonal to the quantizer input~x for an almost
uniform host signal PDF in the range of one quantization
bin and that the power of the quantization error is given by
E
�
e2
	
= �2=12.

In the described embedding scheme, two parameters,
namely� and�, are involved. For a given watermark power
�2
w

, these parameters are related by

� =

s
�2
w

Efe2g
=

r
12�2

w

�2
: (8)

Costa determined��, given in (2), to be the optimal value
for the random CB (1). The optimal value of� for the struc-
tured CB can be different. However, it appears that this op-
timal value is hard to find analytically, even for the simple
AWGN channel. We will turn back to this problem in Sec-
tion 3.2.

The presented watermark embedding scheme is depicted
in Fig. 2. We denote it by SCS (scalar Costa scheme). Note
that the embedding process works samplewise. The embed-
ding ofdn 2 f0; 1g can be expressed as subtractive dithered
quantization, where�dn=2 is the dither signal and� is the
step size of the uniform scalar quantizer.
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Figure 2. Watermark embedding for Costa’s scheme with a
scalar component CB.

2.2.2. Detection Based on Scalar Uniform Quantization

As in Costa’s scheme, the watermark decoder has access to
the same CB as the encoder. For SCS, the product CBUN =
U1ÆU1Æ� � �ÆU1, withU1 as in (5), is used. Treating this CB
as a quantizer, the decoder acts as if it quantizes the received
signal~y = ~x+ ~w+~v, which can be done for each component
CBU1 separately. From the indexi of the selected quantizer
bin, the decoded watermark letter iŝd = i modjDj. From
this view of the decoding process, a sound interpretation of
the encoding process results: The encoder perturbs the host
signal~x by ~w to form the sent signal~s = ~x + ~w so that,
with high probability,~y will fall into the correctly indexed
quantization bin.

2.2.3. Comparison With Previously Proposed Schemes

Chen and Wornell [1, 2, 3] investigated a watermarking
scheme called quantization index modulation (QIM). QIM is
a special case of Costa’s transmission scheme, where� = 1
regardless of the noise variance�2

v
. As a result, QIM can

achieve capacity as the WNR goes to infinity. However, for
negative WNRs, which are very likely in watermarking ap-
plications, reliable transmission is difficult since the quan-
tizer cells are too small. Chen and Wornell proposed a low-
complexity QIM scheme based on dithered scalar uniform
quantization, called dither modulation (DM), which is an
analog to Costa’s scheme using the scalar uniform CB. Since
in Costa’s scheme� is optimized for each WNR to achieve
the best transmission performance, it is obvious that QIM
can never perform better. Chen and Wornell used a spread-
ing technique to improve the robustness of DM for low
WNRs which leads to spread transform dither modulation
(STDM). The same technique can be applied to Costa’s
scheme, which is discussed in Section 4.3. In [3], Chen and
Wornell discuss the extension of QIM using Costa’s ideas,
and denote the derived scheme as QIM with distortion com-
pensation.

Ramkumar [7] proposed a watermarking scheme based
on the idea of continuous periodic functions for self noise
suppression (CP-SNS). The periodicity is related to the cell
size in Costa’s scheme using lattice CBs. In general, both
schemes cannot be translated directly into each other. How-
ever, their similar nature is recognizable for binary signaling.
In this case, CP-SNS with thresholding� is almost equal to
SCS, except that the weighted embedding of the quantiza-
tion error~e is replaced by thresholding each quantization

�Throughout the paper, we consider only CP-SNS with thresholding due
to its superior performance.

error sample to a maximum absolute value of�=2. Thus,

wn =

�
en : jenj � �=2
sign(en)�=2 : else

: (9)

The embedding process for CP-SNS is depicted in Fig. 3.
For� � �, CP-SNS is equal to DM. However, the parame-
ter� can be optimized for each WNR to improve robustness.
Therefore, this scheme can also never perform worse than
DM.

Quantizer

-

-
xn

wn
�
2 dn

���

�

snen

� �

Figure 3. Watermark embedding using CP-SNS with binary
signaling per sample.

For a constrained watermark embedding distortion�2
w

,
the quantizer step size� and the threshold� are dependent
on each other, as� and the weight� are for SCS. Assum-
ing an almost-constant host signal PDF in the range of one
quantization bin, Ramkumar [7] derived the relation

�2
w

=
�2

12�
(3�� 2�): (10)

Note, that the weighting by� in SCS can be considered
high dimensional thresholding of the watermark energy to
the maximal value ofN�2

w
.

3. PERFORMANCE ANALYSIS

We are interested in the performance loss of SCS compared
with Costa’s ideal scheme. Further, the performance should
be compared to the suboptimal DM and CP-SNS. The com-
parison should be independent from specific realizations of
channel coding, which in practice would be combined with
all proposed methods. A fair comparison can be obtained
by computing the mutual informationI(y;d) between the
received signal~y and the sent watermark message~d, which
is equivalent to the achievable rate of the specific scheme.
First, we propose an efficient way to computeI(y;d) for
the investigated schemes in case of an AWGN attack. Then,
the proposed method is used to determine the optimal value
of the CB parameter� for SCS, and the performance of the
watermarking schemes is compared.

3.1. Mutual Information

For the investigation of SCS, DM and CP-SNS, it is suf-
ficient to consider the transmission statistics for one signal
sample since~x, ~v and ~d are modelled by IID random pro-
cesses and the schemes operate samplewisey. We assume

yRamkumar did not propose a non-separableN -dimensional extension
to his scheme. However, SCS and DM can be easily extended to higher
dimensional schemes using appropriate lattice quantizers
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that the watermark message is encoded such that for each
signal sample an alphabetD = f0; 1; : : : ; jDj � 1g of wa-
termark letters is used, where each letter is equiprobable.
Again, the host signal PDF can be approximated by a uni-
form distribution since�2

x
� �2

w
; �2

v
. The size of the scalar

CB is infinite, which is permissible due to the regular struc-
ture. Any boundary effects are neglected in our analysis.

For our assumptions, the mutual information is given by

I(y;d) = H(y) �H(yjd)

= �

Z
py (y) log2 py (y) dy

+
1

jDj

X
d2D

Z
py (yjd) log2 py (yjd) dy:

(11)

Thus,I(y;d) is completely determined by the PDFspy (y)
andpy (yjd). These PDFs can be expressed in terms of the
conditional PDFps (sjd) of the sent values for a given wa-
termark letterd and the PDFpv (v) of the additive channel
noise:

py (yjd) = ps (yjd) � pv (y) (12)

py (y) =
1

jDj

X
d2D

py (yjd) ; (13)

where ’�’ denotes convolution.

A

B

C

ps (sjd)

ps (sjd)

ps (sjd)

s

s

s

d = 0
d = 1

�

�� �

(1� �)�

Figure 4. Qualitative diagram of the PDFs of the sent value
s for a given watermark letterd 2 D = f0; 1g in the case of
(A) DM, (B) CP-SNS, and (C) SCS.

In most cases, a simple analytical expression forpy (yjd)
cannot be found. Thus, (11) must be computed numeri-
cally for a numerically derivedpy (yjd). The PDFs of the
sent values in case of binary signaling (d 2 D = f0; 1g)
are depicted in Fig. 4 qualitatively for all three consid-
ered schemes. Note that for low WNRpy (yjd = 0) and
py (yjd = 1) may even overlap. Further, observe that even
for DM and Gaussianpv (v) the PDF of the received value

will be not exactly Gaussian. We have to consider periodi-
cally overlapping Gaussian PDFs due to the multiple repre-
sentation of the watermark letters. For the same reason, the
expression forpy (yjd) derived by Ramkumar [7] for CP-
SNS is not exact. In [7],py (yjd) is expressed in terms of
the error function, which is approximately correct only if�
is significantly larger than the noise standard deviation�v.

−3 −2 −1 0 1 2 3
0

0.5

1

p(
s|

d)

s

−3 −2 −1 0 1 2 3
0

0.5

1

p(
y|

d)

y

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

p(
y|

d)
y

d = 0
d = 1

Figure 5. The upper two plots show one period of the PDFs
of the sent and the received signal for SCS with binary sig-
naling (�2

w
=1; WNR = 2dB; � = 5:65; � = 0:613). The

lowest plot shows the PDF of the pre-processed received sig-
nal for binary watermark transmission with host signal at the
receiver. The filled areas represent the probability of detec-
tion errors assumingd = 0 was sent.

We computepy (yjd) using characteristic functions and
the discrete Fourier transform (DFT) which gives very accu-
rate results for�2

x
� �2

w
; �2

v
. Analytic expressions for the

characteristic function of a Gaussian PDF, a Dirac and a rect-
angular PDF are easy to obtain, and the convolution in (12)
can be translated into a multiplication in the domain of char-
acteristic functions. Using the DFT for the inverse transfor-
mation from the characteristic function of the received sig-
nal into its PDFpy (yjd), the periodic overlapping is com-
puted implicitly for a proper DFT window width and suffi-
cient DFT length. Fig. 5 depicts one period of the resulting
py (yjd) for SCS and the PDFpy (yjd) for a binary trans-
mission scheme with host signal at the receiver. These plots
clearly demonstrate the differences of both detection cases.

3.2. Optimal Quantizer Cell Size

Costa showed that (2) is the optimal value of the random
CB parameter� for a given WNR. For the suboptimal SCS
scheme, the optimal value of� has still to be determined. As
shown in Section 2.2.1,� can be expressed in terms of the
quantizer cell size� (8). Thus, optimizing� is equivalent
to finding the optimal quantizer cell size�. We maximized
the mutual information for a given WNR over all� 2 R

+ .
Numerical optimization is necessary since no analytical ex-
pression for the mutual information is known. The resulting
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optimal quantizer cell sizes can be approximated by

�opt;SCS =
p

12 (�2
w
+ 2:71�2

v
); (14)

which corresponds to

�opt;SCS =

s
�2
w

�2
w
+ 2:71�2

v

: (15)

3.3. Comparison of Detection Performance

Fig. 6 shows the achievable rates obtained for SCS, DM and
CP-SNS with binary signaling. DM performs poorly for
negative WNRs. SCS and CP-SNS are much more robust
since� and� are optimized to achieve better noise resis-
tance. SCS performs slightly better than CP-SNS. Note that
the depicted capacity curve is valid for a Gaussian host sig-
nal, whereas the achievable rate is derived for schemes that
are designed independent from specific assumptions about
the host signal (except for the assumption thatpx (x) is rea-
sonable smooth and�2

x
� �2

w
; �2

v
). Further, the optimal

random CB is substituted by a suboptimal lattice CB. There-
fore, we cannot expect to achieve capacity. However, the
result indicates that the very simple SCS scheme performs
quite well in comparison to the other schemes.
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Figure 6. Capacity compared with the achievable rate of
different suboptimal blind watermarking schemes.

Fig. 7 depicts the probability of bit error for uncoded
transmission. An additive bipolar random watermark se-
quence is used in the reference scheme with host signal at
the decoder. High error probabilities occur, particularly for
negative WNRs, where transmitting one letter per sample
means operating above capacity. In practice, low-rate error
correction codes need to be implemented. Here, we are only
interested in the relative performance of different schemes,
so it is sufficient to consider the uncoded case. SCS and CP-
SNS perform comparably, and are significantly better than
DM. We also observe that the error probability predicted us-
ing the numerically derived PDFpy (yjd) agrees with the
simulation results. Thus, it is possible to usepy (yjd) as a
soft input to channel coding algorithms.

4. EXTENSIONS AND MODIFICATIONS

To roundoff the investigations, we examine some obvious
extensions and minor modifications of SCS. This shows how
well the simple SCS already performs.
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Figure 7. Error probability for uncoded binary transmission.

4.1. n-ary Signaling

In the previous sections, only binary transmission, that is
D = f0; 1g, was discussed. This is reasonable since in most
cases watermarking schemes will operate at negative WNRs,
where the capacity is lower than 0.5 bit/sample. However, in
some cases positive WNRs might be of interest, e.g., when
applying the spreading technique discussed in Section 4.3.
SCS withn-ary signaling, meaningD = f0; 1; : : : ; n � 1g,
can be implemented easily by distributingn different sig-
naling points equidistantly over the range of one quantizer
cell size�. The corresponding achievable rate is depicted
in Fig. 8. We observe that the size of the alphabetD is im-
portant only for higher WNRs.
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Figure 8. Achievable rate for SCS withn-ary signaling.

4.2. 2D Lattice Quantization With Hexagonal Cells

It is known from rate-distortion theory that higher dimen-
sional quantizers give an improved quantization perfor-
mance due to better sphere-packing abilities. Thus, there
is hope to improve the simplified Costa scheme by using a
product CB of hexagonal lattices instead of scalar uniform
quantizers. We implemented this idea and denoted the ap-
proach by hexagonal Costa scheme (HCS). Fig. 9 shows
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the achieveable rate for HCS, which was computed using
a Monte Carlo approach. It appears that SCS and HCS per-
form almost identically, as long the finite alphabet size has
no limiting effect. From our investigation it is not clear if
the small differences are due to the precision of the Monte
Carlo method. However, we can conclude at least that HCS
does not give the expected gain. Note that this result is most
probably due to the host signal independent design of the
transmission scheme. Thus, these results do not contradict
to the gains reported for higher dimensional signal constel-
lations in [4].
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Figure 9. Achievable rate for 5-ary signaling per dimension
using a scalar uniform CB and for 9-ary signaling per two
dimensions using an hexagonal lattice CB.

4.3. Spreading of the Watermark Information

It is possible to combine DM, CP-SNS and SCS with a
spreading technique as proposed already by Chen and Wor-
nell for DM [1]. The corresponding mutual information can
be computed by a mapping of the already derived mutual
information curves via

I�(y;d)jWNR =
I1(y;d)jWNR�

�
; (16)

where� is the spreading factor,I�(y;d)jWNR is the mutual
information betweeny andd for given WNR and fixed�,
and WNR� = WNR1 + 10 log10 �.

MaximizingI�(y;d)jWNR over all� 2 N for each WNR
gives the achieveable rates for STDM and STSCS (spread
transform SCS) shown in Fig. 10. We observe that spread-
ing can improve DM significantly in the range of negative
WNRs, where for SCS only a minor gain can be achieved.
However, STDM does not perform as well as STSCS, and
for most WNRs even not as well as SCS. Thus, in practice
it is recommendable to use SCS instead of improving DM
using the spreading technique. Further, STSCS can have an
increased gain over SCS at low WNRs, because good prac-
tical channel codes for such low WNRs are not known.

5. CONCLUSIONS AND FUTURE WORK

A practical blind watermarking scheme was derived from
Costa’s solution to the communication problem with side
information at the encoder. A numerical method for analyz-
ing the statistics of the received watermark information after
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Figure 10. Achievable rate for DM and SCS with spreading.

an AWGN attack was developed, which enables us to com-
pute the achievable rates and predict error probabilites for
different noise powers of the attack. We found that the pro-
posed suboptimal scheme performs better than previously
proposed schemes and not much worse than the theoretical
limit suggests. Closing the remaining gap to the theoretical
limit is subject for future research. For this, the transmission
scheme must be made dependent on the host signal distribu-
tion. Chou et al [4] have shown that duality between blind
watermarking and distributed source coding exists, which
can be exploited to design better structured codebooks.
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