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Abstract

Digital watermarking can be viewed as channel coding
with side information at the encoder (CC-9); the original
data to be watermarked is known to the encoder but not the
decoder. Likewise, distributed source coding is rate distor-
tion with side information at the decoder (RD-9); a noisy
observation of the source data to be compressed isavailable
to the decoder but not the encoder. For a Gaussian channel
or source, CC-Sl and RD-S are shown to be information-
theoretic duals. Ideal coding schemes are presented, and
the schemes are interpreted geometrically to highlight dual
elements and quantities.

1. Introduction

The duality between channel coding (CC) for the Gaus-
sian channel and rate distortion (RD) for a Gaussian source
has been known for years [5]. Recently, interest has been
renewed in two similar scenarios: channel coding with side
information at the encoder (CC-SI) and rate distortion with
side information at the decoder (RD-SI). CC-SI relates di-
rectly to digital watermarking or data hiding [1, 3, 6], and
RD-SI to distributed source coding [9].

The side-information duality was demonstrated in [3]
by using examples for discrete memoryless channels and
sources [7, 8, 10], but it has not been made explicit for the
Gaussian case. That is the goal of this paper. Due to space
constraints, derivations are omitted; they appear in [12].
Some of these duality concepts have been previously dis-
covered [2] but not yet been published.

1.1. Channel Coding with Side Information

The Gaussian CC-SI scenario is shown in the top dia-
gram in Fig. 1. In n channel uses, the encoder attempts
to communicate a letter m chosen from a finite alphabet.
The channel consists of two mutually independent, AWGN
sources: the state S ~ N (0, QI) and noiseZ ~ N (0, NI),
where I is the n x n identity matrix. The encoder has com-
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Figure 1. Basic scenarios for CC-SI (top) and
RD-SI (bottom)

plete knowledge of the state S and transmits a length-n sig-
nal X with average power constraint (1/n) >, X?(k) <
P. The decoder receives Y = X + S + Z but does not
observe S, and it decodes the received message . Let Cenc
denote the capacity of this channel.

If S is also available at the decoder (dotted line in top
diagram in Fig. 1), the decoder can just subtract S from Y,
and the channel capacity is

Choth = 3 logs (1 + P/N). 1)

Clearly, Cenc < Choth. However, Costa [4] proved the re-
markable and surprising result that Cenc = Chotn: It iS pos-
sible to communicate at the same rate as when the side in-
formation S is known to both the encoder and decoder .2

In blind digital watermarking or data hiding, the state S
represents the original, unwatermarked data, m the hidden
information, and X the signal embedded in S to convey m.
Then X + S is the watermarked data, Z an attack,? and Y
the received data, from which m is decoded. Costa’s result
means that, theoretically, the original data, unknown to the
decoder, does not impair communication at all.

1.2. Rate Distortion with Side I nfor mation

The RD-SI scenario appears in the bottom diagram of
Fig. 1. A sourceproduces n realizations to form a sequence
X' ~ N(0,02I). The encoder and decoder communicate

LEquality does not necessarily hold for non-Gaussian channels.
2A theoretically optimum attack is investigated in [11].



without error at a rate of R’ bits per source symbol. The
decoder also has an observation Y' = a(X' + Z'), where
X' and Z’' are independent, Z' ~ N'(0,N'I),anda > 0
is known. Then the decoder computes an approximation
X' of the source sequence X'. We wish to communicate at
the lowest possible rate R’ such that the average squared-
error distortion (1/n) 37, E[(X'(k) — X'(k))?] does not
exceed D. Denote this lower bound by Rgec(D).

If the encoder also observes Y’ (dotted line in bottom
diagram of Fig. 1), then the encoder and decoder can each
compute p = E[X'|'Y’]. It then suffices to communi-
cate X;, = X' — p with distortion D. Since X|, ~

N (0 ,-227, the rate-distortion function Ry (D) is

AN
1 NI 2 NI 2
= logy =1+ 0<D< 5%
Rpotn(D) = {2 &2 =Dy U N_/Jg2+N )
0, D> =i

Itis clear that Ryec(D) > Rpotn(D). Wyner and Ziv [13, 14]
showed that Ryec(D) = Rpotn(D): It is possible to commu-
nicate at the same rate as when the side information Y’ is
known to both the decoder and encoder .2

As an example, consider combining images from a
space-based telescope and ground-based observatory. Both
simultaneously image the same region of space. X’ corre-
sponds to the image at the telescope, which encounters no
atmospheric interference, and Y’ to the less-accurate im-
age at the observatory. The telescope transmits information
at rate R' to the observatory, which computes the recon-
structed image X’. Wyner’s and Ziv’s result means that dis-
tributed source coding can, theoretically, operate at a lower
rate than conventional lossy source coding (which does not
exploit Y') without sacrificing image quality.

2. CC-SI Interpretation

In CC-SI with discrete memoryless random variables
(RVs), the capacity [7, 8] is Cenc = maxp(y,q)5){1(U;Y) —
I(U; S)}. Maximization is performed over all p(y, u, z, s)
of the form p(y, u, z, s) = p(s)p(u, z|s)p(y|z, s), and U is
a finite-alphabet auxiliary RV.

Costa [4] applied this result to the Gaussian case and
showed that capacity is achieved when U = U* = X +
a*S, where X ~ N(0,P)S ~ N(0,Q)and o* =
P/(P + N.)Then

I(U*Y) =110 P+Q+N , 3

( ) =5 log, ﬁ(l—a*?@-ﬁ-N @)
* a*?

I(U*;S) = §log, L2544, 4)

and the rate C* = I(U*;Y) — I(U*; S) = Chotr In (1).
Costa’s coding scheme is summarized below.
Codebook The codebook ¢/ contains about 27(/(U™:Y)~e)
codevectors (CVs) U, each drawn N(0, (P + o*2Q)I).

3Like CC-SI, equality does not always hold for non-Gaussian sources.

The CVs are randomly and equiprobably assigned to
2n(C7=2¢) (istinct bins, denoted by U,,, where m is the
binindex. Each bin 4,,, contains about 2{/(U":8)+¢) Cvs,
Encoding Givenmg and Sy, search bin U, for the CV U,
that satisfies
Uy = argUrélz}{riO [[U — a*So||. (5)
Compute Xy = Uy — a*Sp, and transmit X, over the
channel.
MAP Decoding Given Y, search the entire codebook &/
for the CV U that satisfies

A~

- in [|[Y, — ¢* 6
U argglelgll o— 'y, (6)

where ¢* = (P +a*Q)/(P + a*?Q). Return the decoded
message 1, the bin index of the bin i/; > U.

2.1. CC-SlI: Single Codevector

We treat random vectors as points in R™, and for Gaus-
sian random vectors, orthogonality implies independence.
The left-hand diagram in Fig. 2 depicts the vector relation-
ships (as if n =23) for a single CV U, assumed to belong to
bin U,,,. According to Costa’s construction, U = X + a*S.
The small hemisphere depicts a bin-encoding sphere of ra-
dius v/nP centered at U. This represents (5): If mg = m
and a*Sy lies within distance v/nP of U, then the encoder
chooses Uy = U.

The figure also shows that X +S = ¢*U+ V,withU L
Vando}? = ﬁ(l — a*)2Q. Hence, by transmitting
Xo = Ug—a*Sq, the encoder “steers” the state So towards
c*Uy. Also note that encoding is like quantizing a*Sq to
the nearest CV in U, and transmitting the “quantization
error” Xj.

The noise Z is independentof X, S, U,and V,s0 Y =
X+S+Z = c¢U+ V + Z Thus, the received vector
Y lies at a distance of about \/n(o}? + N) from ¢*U. The
large hemisphere depicts a decoding sphere with this radius
and centered at ¢*U; it represents (6): Any received vector
Y, in this sphere is decoded to CV ¢*U = ¢*U.

Depending on P, ), and N, the bin-encoding and de-
coding spheres may intersect. Fig. 2 shows them as non-
intersecting for clarity.

2.2. CC-SI: Entire Codebook

The left-hand diagram in Fig. 3 presents an abstract il-
lustration of CC-SI in R™; the angles cannot be taken lit-
erally. The thick concentric circles represent the surfaces
of (hyper)spheres with radii v/n(P + a*2@Q) (inner) and

nc*2(P + a*2Q) (outer). The CVs U lie near the inner
surface and are shown as dots, triangles, and squares; like
shapes belong to the same bin 4,,,. The scaled CVs ¢*U lie
near the outer surface. Thus, scaling spreads out the CVs.



Figure 2. Vector relationships in CC-Sl for a single CV U (left) and RD-SI for a single QV W (right)

Encoding has a sphere-covering interpretation. The
dashed circles on the inner surface depict bin-encoding
spheres for a single bin (containing “dots”) and are virtu-
ally non-intersecting. Also, a*Sq lies near the surface of a
sphere of radius v/na*2@Q. Fulfilling the power constraint
can be viewed as covering the hull between spheres of radii
Vvn(P + a*2Q) and \/na*2@Q with bin-encoding spheres
of radius vnP. The required number of bin-encoding
spheres is lower-bounded by the ratio of the hull volume
to the bin-encoding sphere volume. For large n, the ratio is

« n/2
A, (n(P +a 2Q)) _ 2n(I(U*;S)+E),
Ay (nP)n/2

where A,, is a constant that depends on n [5].

The bin-encoding spheres for different bins intersect, as
shown by the dotted circles on the inner surface. Since the
encoder knows my, it never searches the wrong bin.

Decoding has a sphere-packing interpretation. The re-
ceived vector Y lies near the surface of a sphere with ra-
dius v/n(P + @ + N). The dashed circles on the outer sur-
face in the figure depict decoding spheres, each with radius

(o} + N), for all scaled CVs. For reliable decoding,
the decoding spheres should not intersect, so the number of
reliably decodable CVs is upper-bounded by the number of
decoding spheres that can be packed into a sphere of radius

vn(P + Q + N). For large n, the bound is
An (P +Q+ NN L rwivy—s)
A, (n (032 + N)"?

()

(8)

Although 2 (U™Y)—¢) CVs can be reliably decoded, all
2n(I(U":8)+¢) CVs in a bin U,,, convey the same message m.

Hence, the number of different messages that can be com-
municated is 20(F(U"Y)—e) - on(I(U";8)+e) — gn(C™—2¢),

3. RD-SI Interpretation

For RD-SI with discrete memoryless RVs and distor-
tion measure d(-, -), Raec(D) = ming |z, s {1(X"; W) —
I(Y'; W)} [5, 13, 14]. A double minimization is con-
ducted over all p(z',y',w) of the form p(z',y',w) =
p(z',y")p(w|z") and all functions &' = f(w,y") such that
2ot wy P& Y )p(wl2)d(2’, f(w,y")) < D.

For the Gaussian case, we have recently derived Rgec(D)
in another manner [12], which shows that W = W* ~
N(0,052), where 07? = (02 — <N D) (X=D). This
choice of W yields

r_ 2
I(X'; W) = Llog, 27 9)
I(Y';W*) = Llog, &=RIe M) (10)

sotherate R* = I(X'; W*)—-I(Y'; W*) = Rpotn(D) in (2).
The RD-SI coding scheme is described below.

Codebook The codebook W contains about 27 (X3W™)+e)
quantization vectors (QVs) W, each drawn N (0, 0321).
The QVs are randomly and equiprobably assigned to
2n(R"+2¢) distinct bins, denoted by W,,, where m is the
bin index. Each bin W,, contains about 27((YiW*)—e)
QVs.

Encoding Given X{,, search the entire codebook W for the
QV W that satisfies

_ : 1 *

Wo = arg min [IXo — (1/69)WIl,  (11)
where 8* = (N’ — D)/N'. Transmit the bin index mq of
the bin Wy, 2 Wo.

MAP Qecoding Given mg and Y, search bin W, for the
QV W that satisfies

V= i - p"Y{ 12
W =arg min W= p"Yoll, (12)



Figure 3. Abstract illustrations of CC-SI (left) and RD-SI (right) coding schemes

with p* = é(%—]\,ﬂ) Return the reconstruction vec-

tor X = f(W,Y}) = W+~*Y), where v* = D/aN.
3.1. RD-SI: Single Quantization Vector

The right-hand side of Fig. 2 depicts the vector relation-
ships for a single QV W, assumed to belong to bin W,,.
The encoder quantizes X' to the scaled QV (1/8*)W, and
the quantization-noise vector Q' = X' — (1/8*)W is in-
dependent of W. The large hemisphere depicts a quan-
tization sphere centered at (1/8*)W with radius 1/nazﬁ,
where o) = N'D/(N' — D). This represents (11): Any
source vector X in the sphere is quantized to (1/5*)W.

The figure also shows that W = v + p*Y’, where v L
Y'. Thus, p*Y’ lies at a distance of about y/no? from W,

where 032 = % — D. The small hemisphere depicts a
bin-decoding sphere centered at W and having this radius.
It reflects (12): If mo = m and p*Y}, lies within distance
\/no2 of W, the decoder selects W = W,

The quantization and bin-decoding spheres may inter-
sect, depending on a, o2, N', and D. Fig. 2 shows a non-
intersecting case for clarity.

With W = W, the reconstruction vector X' = W +
Y*Y' = v+(p*+7*)Y'; X' is the minimum mean-squared
error estimate of X’ given W and Y'. The reconstruction-
error vector X' = X’ — X' is independent of W and Y".

3.2. RD-SI: Entire Codebook

The right-hand diagram in Fig. 3 illustrates RD-SI ab-
stractly. The thick concentric circles depict the surfaces of
spheres of radii /no}7 (inner) and \/nojZ/B*? (outer).
The QVs are shown as dots, triangles, and squares near the
inner surface; their scaled versions lie near the outer sur-
face. Like shapes belong to the same bin W,,,.

Encoding has a sphere-covering interpretation. The
dashed circles on the outer surface show the quantiza-

tion spheres, each with radius no’fQQ,, for all scaled QVs

(1/B8*)W; the spheres are virtually non-intersecting. The
source vector Xy lies near the surface of a sphere with ra-
dius vno?. This sphere should be covered by the quantiza-
tion spheres; the required number of quantization spheres is
then lower-bounded by

Ap (no?)
A, (na’fQ% ) n/2

Decoding has a sphere-packing interpretation. The QVs
in each bin lie near the inner surface of radius \/no}z. The
dashed circles on the inner surface depict the bin-decoding
spheres for a single bin (containing “dots”). The spheres
have radii /no};? and should not intersect to ensure reliable
decoding. The number of reliably decodable QVs is upper-
bounded by the number of bin-decoding spheres that can be
packed into a sphere of radius /no}Z, so the bound is

An (noi)""?
A, (nox2)™/?

The dotted circles on the inner surface show that the bin-
decoding spheres for different bins intersect. Because the
decoder is given my, it never uses the wrong bin.

Finally, W contains 2n((XW")+e) QVs, but the de-
coder searches only the 27(7(Y'sW*)=¢) QVs in bin W, .

Thus, the required number of bins is 27X sW*)+e) -
on(I(Y';W*)—e) — gn(R*+2¢)

n/2
— on(I(X";W*)+e) (13)

— 2n(I(Y’;W*)—s). (14)

4. Duality of CC-SI and RD-SI

The preceding discussion shows that CC-SI and RD-SI
have many correspondences. Encoding (decoding) in one



CC-si RD-SI
a* p*
c* 1/p*
$,Q Y',a2(0? + ')
U,P +a*2Q W, o2
X,P v,o0}?
Y,P+Q+N X!, o2
Z N X'.D
X+S,P+Q X' 02— D
V+Z,o?+N QI,UaQ,

Table 1. Dual elements in CC-SI| and RD-SI

scenario is analogous to decoding (encoding) in the other.
It is evident why binning is necessary. In CC-SI, the CVs
in each bin are close enough together to ensure that, for any
myo and Sy, the encoder will likely find a CV in bin U,
that is close enough to a*Sy to satisfy the power constraint.
In RD-SI, the encoder does not observe Y but knows that
Y, = a(Xg{ + Zj). The QVs in each bin are far enough
apart so that, given mo and Y, the decoder will likely
choose the correct QV from bin W,

In CC-SI, U can thus be viewed as a channel code with
2nI(U™Y) CVs that is partitioned into 27/(U™S) source
codes (bins) U,,. In RD-SI, W is a source code with
onI(X"sW") Qvs that is partitioned into 27(YsW*) chan-
nel codes (bins) W,,,. These ideas were recently proposed
as guidelines for practical RD-SI and CC-SI schemes [3, 9].

From Figs. 2 and 3, we can identify corresponding CC-
Sl and RD-SI elements. However, RD-SI involves four pa-
rameters (a, o2, N', D) but CC-Sl only three (P, Q, N); this
subtle difference prevents CC-SI and RD-SI from always
being exact duals. After CC-Sl encoding, X + S, X L S;
after RD-SI decoding, X' = v+ (p*++*)Y', v L Y'. For
exact duality to hold, it is necessary that p* + v* = 1; this
equation is satisfied only for

a=a,=o0/(c>+N'). (15)

Table 1 lists the dual elements when (15) is satisfied.*
CC-Sl with P, @, and N is the dual of RD-SI via
w=prgrn: 0 =P+Q+N,
N' = (PHQ+N)(P+N) D=N (16)
= o , =
Likewise, RD-SI with ¢2, N', and D (and a = a,) is the
dual of CC-SI via

12 4
P=2%-D, Q=3%5, N=D. (17

4The RD-SI noise Z’ does not correspond directly to a CC-Sl entity but
forms part of the CC-SI state S.

5. Generalization of Standard Cases

Finally, CC-SI and RD-SI generalize standard CC and
RD. When Q = 0 or N’ — oo (no side information), the
bins become singleton sets. In CC-SI, S = 0, ¢* = 1,
and I(U*;S) = 0. The encoder transmits X, = Uy, the
decoder uses minimum-distance decoding without scaling,
and the standard sphere-packing argument applies [5]. In
RD-SI, g* =1,~* = 0,and I(Y’; W*) = 0. The encoder
quantizes X’ without scaling the QVs W, the decoder re-
turns X’ =W =W, and standard sphere covering applies.
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