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ABSTRACT

In many blind watermarking proposals, the unwatermarked host data is viewed as unavoidable interference. Recently, however,
it has been shown that blind watermarking corresponds to communication with side information (i.e., the host data) at the
encoder. For a Gaussian host data and Gaussian channel, Costa showed that blind watermarking can theoretically eliminate
all interference from the host data. Our previous work presented a practical blind watermarking scheme based on Costa’s idea
and called ”scalar Costa scheme” (SCS). SCS watermarking was analyzed theoretically and initial experimental results were
presented. This paper discusses further practical implications when implementing SCS. We focus on the following three topics:
(A) high-rate watermarking, (B) low-rate watermarking, and (C) restrictions due to finite codeword lengths. For (A), coded
modulation is applied for a rate of 1 watermark bit per host-data element, which is interesting for information-hiding applica-
tions. For (B), low rates can be achieved either by repeating watermark bits or by projecting them in a random direction in
signal space (spread-transform SCS). We show that spread-transform SCS watermarking performs better than SCS watermark-
ing with repetition coding. For (C), Gallager’s random-coding exponent is used to analyze the influence of codeword length on
SCS performance.
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1. INTRODUCTION

Blind digital watermarking is the art of communicating a message by embedding it into multimedia data (host data), and
decoding it without access to the original, non-watermarked host data. Envisioned applications for such a method are copy
control or ownership verification. A blind watermarking scheme must be designed such that the watermarked data has subjective
quality close to that of the original host data and that the decoder can correctly decode the embedded message after any attack
that does not destroy the commercial value of the multimedia data.

Early blind watermarking schemes were built on the principle of spread spectrum. Although this technique allows for
reliable communication even for strong attacks, blind detection of spread-spectrum watermarks suffers significantly from host
data interference. In 1999, it was realized that the host data can be considered as side information at the watermark encoder, and
thus improved blind watermarking schemes can be designed. A key paper in this field is the work by Costa, which shows that,
for Gaussian data and additive white Gaussian noise (AWGN) attacks, blind watermarking can perform as well as if the decoder
had access to the original host data. Costa derived the capacity of blind watermarking facing an AWGN attack. Here, capacity
means the maximal achievable rateR = (number of watermark bits)=(number of host-data elements) for a given strength of
the attack and any watermarking scheme, including any modulation and any coding.

Costa used a random codebook, which is not practical. We have previously presented a simplified practical blind water-
marking scheme, called ”scalar Costa scheme” (SCS).1 The performance of SCS watermarking has been analyzed with respect
to the maximal achievable rateR for a given strength of the attack and any coding scheme. SCS does not achieve capacity but
is easy to implement, is host-data independent, and can perform significantly better than blind spread-spectrum watermarking.
The achievable rate of SCS was analyzed for an AWGN attack,1 as well as its performance after an optimized linear filtering
and additive noise attack.2 SCS watermarking and its achievable rate will be reviewed in Sec. 2.

This paper discusses further practical implications when implementing SCS. We focus on the following three items:
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(A) For information hiding applications, high-rate watermarking might be possible. In Sec. 3, we compare the performance
of SCS watermarking with three different coded modulation techniques to achieve a rateR of one watermark bit per
host-data element. Measured bit-error results are related to those of Chou et al.3 for the same watermark rate.

(B) Transmission of one watermark bit per host-data element is applicable for information hiding schemes, but for robust
watermarking, where strong attacks must be considered, much lower watermark rates are more realistic. In Sec. 4
different methods for low-rate SCS watermarking are discussed.

(C) The achievable rates computed for SCS can be obtained only for codewords of infinite length. In practice, the codeword
length is finite. With help of Gallager’s random-coding exponent, we analyze the influence of codeword length on the
performance of SCS in Sec. 5.

2. SCS WATERMARKING

We consider digital watermarking as a communication problem. The watermark encoder derives from the watermark message
m and the host datax an appropriate watermark sequencew, which is added to the host data to produce the watermarked datas.
w must be chosen such that the distortion betweenx ands is negligible. Next, an attacker might modify the watermarked data
s into datar to impair watermark communication. The attack is only constrained with respect to the distortion betweenx and
r. Finally, the decoder must be able to detect the watermark message from the received datar. In blind watermarking schemes,
the host datax are not available to the decoder. The codebook used by the watermark encoder and decoder is randomized
dependent on a keyk to achieve secrecy of watermark communication. Here,x,w,s,r, andk are vectors, andxn,wn,sn,rn, and
kn refer to their respectiventh elements.

2.1. Watermarking as Communication with Side-Information at the Encoder

Fig. 1 depicts a block diagram of blind watermark communication, where the attacker introduces additive white Gaussian noise
(AWGN) v. The depicted scenario can be considered communication with side information about the host data at the encoder.4
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Figure 1. Watermark communication facing an AWGN attack.

Moulin and O’Sullivan5 showed that for white Gaussian host datax and MSE distortion measurement, the Gaussian test
channel (GTC) is the worst (or best, depending on perspective) possible attack in the sense that the rate of reliable commu-
nication is minimized for a constrained distortion ofr. The GTC attack combines scaling of the public datas by g (usually
g < 1) and additive white Gaussian noisez of power�2z . Watermark communication facing a GTC attack is depicted in Fig. 2.
If g 6= 0, the receiver compensates for scaling by dividingr by g to producer0 = s + z=g. Thus, the design of a watermark
encoder and decoder in case of a GTC attack can be translated into the design for aneffectiveAWGN attack with noisev = z=g.
Note that the optimal scale factorg depends on the host-data power�2x, or equivalently on the watermark-to-document power
ratio WDR= 10 log10 �

2
w=�

2
x dB.

For the communication scenario depicted in Fig. 1, Costa6 showed theoretically that for Gaussian host data of power�2x, a
watermark sequence of power�2w, and AWGN of power�2v the capacity isC = 0:5 log2(1 + �2w=�

2
v), independent of�2x. The

result is surprising since it shows that the host datax need not be considered as interference at the decoder although the decoder
does not knowx. In this paper, we focus on the performance of communication systems for the scenario in Fig. 1, where the
attack strength is completely characterized by the watermark-to-noise power ratio WNR= 10 log10 �

2
w=�

2
v dB.

2.2. Practical Communication Derived from Costa’s Scheme

Costa’s scheme involves a random codebookU , which is available at the encoder and decoder. Unfortunately, for good perfor-
manceU must be so large that neither storing it nor searching it is practical. Thus, we proposed replacing it by a structured
codebook, in particular a product codebook of dithered uniform scalar quantizers, and called this schemeSCS(Scalar Costa
Scheme).1 In SCS, the watermark messagem is encoded into a sequence of watermark lettersd, where the elementsdn belong
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Figure 2. Watermark communication facing a GTC attack.

to aD-ary alphabetD = f0; 1; : : : ; D � 1g. D-ary signaling denotes SCS watermarking with an alphabetD of sizeD = jDj.
In many practical cases, binary SCS watermarking (dn 2 D = f0; 1g) will be used. Each of the watermark letters is embedded
into the corresponding host elementsxn. For example,xn could be a signal sample or a frequency coefficient of multimedia
data. The embedding rule for thenth element is given by

sn = xn + �

�
Q�

�
xn ��

�
dn
D

+ kn

��
+�

�
dn
D

+ kn

�
� xn

�
; (1)

whereQ� f�g denotes scalar uniform quantization with step size�. The keyk is a pseudo-random sequence withkn 2 (0; 1].
Fig. 3 shows a block diagram of (1). This embedding scheme depends on two parameters: the quantizer step size� and
the scale factor�. Both parameters can be jointly optimized to achieve a good trade-off between embedding distortion�2w
and detection reliability for a given noise variance�2v of an AWGN attack. Optimal values for� and� must be computed
numerically.1 A good approximation is given by

�opt =
p
12 (�2w + 2:71�2v); and�opt =

s
�2w

�2w + 2:71�2v
: (2)

In case of the GTC attack with a certain constraint on the attack distortion, the parameters� and� are obtained from those for
an equivalent effective AWGN attack with noise power�2v .

At the decoder, the received datar is demodulated to obtain the datay. The demodulation rule for thenth element is

yn = Q� frn � kn�g+ kn�� rn: (3)

For binary SCS,jynj � �=2, whereyn should be close to zero ifdn = 0 was sent, and close to��=2 for dn = 1.

The upper plot of Fig. 4 depicts one period of the PDF of the watermarked elementssn conditioned on the transmitted
watermark letterdn, andkn = 0 for binary SCS. The lower plot shows the respective PDFs of the demodulated received ele-
mentsyn after AWGN attack conditioned on the transmitted watermark letterdn. The PDFpy (ynjdn) is derived numerically.1

In case of using an incorrect keyk at the receiver, the distribution ofpy (ynjdn) will be uniform for any possibler. This is
indicated by the dotted line in the lower plot of Fig. 4.

2.3. Performance Limits of SCS Watermarking
A detailed analysis of the performance limits of SCS watermarking is given in our previous work.1 Here, we summarize
the most important results. Fig. 5 compares the achievable rates obtained for SCS watermarking with the capacity of the
ideal Costa scheme. Obviously, SCS watermarking does not achieve capacity, but is not too far from an ideal scheme either.
Further, the achievable rates of binary dither modulation (DM), proposed by Chen and Wornell,4 and blind spread-spectrum
watermarking (SS) are shown. Binary DM can be considered a special case of SCS watermarking with� = 1 for all WNRs.
Fig. 5 shows that DM performs poorly for negative WNRs, where the optimal value of� is significantly smaller than 1. Blind
SS watermarking suffers from host-data interference, and its performance depends highly on the statistics of the host data. The
depicted achievable rate of blind SS watermarking is for Gaussian host data with WDR= �15 dB. For weak to moderately
strong attacks (i.e., WNRs greater than about�10 dB) SCS watermarking outperforms SS watermarking by far due to the
host-data independent nature of SCS watermarking. However, the right plot in Fig. 5 also reveals that for very strong attacks
(WNR < �15 dB), blind SS is more appropriate than SCS watermarking since here the attack distortion is more important than
the host-data interference. Note that the ideal Costa scheme would outperform blind SS watermarking at all attack distortion
levels.
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Figure 3. Watermark embedding using Costa’s scheme
with a scalar component codebook (SCS). The watermark
letterdn 2 D is embedded after dithered uniform scalar
quantization ofxn and the addition of the scaled quanti-
zation error as watermarkwn.
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Figure 5. Capacity of blind watermarking facing an AWGN attack compared with the achievable rates of binary SCS, binary
DM and blind spread-spectrum (SS) watermarking. The achievable rates are shown with linear (left) and logarithmical (right)
scales.

3. HIGH-RATE SCS WATERMARKING

Here, SCS watermarking over an AWGN channel at ratesR > 0:5 bit/element is considered. Although robust watermarking
at these rates is unrealistic, related applications like information hiding might operate at such high rates. The threshold of
0.5 bit/element for the definition of “high-rate” SCS was chosen since for higher rates, the achievable rate of binary SCS is
significantly lower than forD-ary signaling withD > 2, as shown in Fig. 6. We observe that the size of the alphabetD has a
significant influence only for WNRs larger than about� 4 dB, or equivalentlyR > 0:6 bit/element.

Coded modulationtechniques are used to combineD-ary signaling with binary error-correction coding. Here, we investigate
the performance of SCS atR = 1 bit/element for different coded modulation techniques. As shown in Fig. 6, forR = 1
bit/element,3-ary signaling is as good asD-ary signaling withD > 3. However,4-ary or8-ary signaling is discussed here
due to its efficient combination with binary coding techniques. Thus, the watermark lettersdn are from the alphabetD =
f0; 1; 2; 3g orD = f0; 1; 2; 3; 4; 5; 6; 7g. The letters are specified by the binary sequencedn = d0nd

1
n or dn = d0nd

1
nd

2
n, where

d0n; d
1
n; d

2
n 2 f0; 1g, andd0n is the least-significant bit.

A detailed discussion of coded modulation is beyond the scope of this paper. Our main goal is to demonstrate that, with
R = 1, low bit-error rates (pb < 10�5) can be achieved within 1.6 dB of the maximal achievable rate of SCS. Fig. 7 shows
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Figure 7. Measured bit-error ratepb for rate 1 bit/element
are shown for 4-ary convolutional coded trellis coded
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tion with rate assignment ofR0 = 1=7 andR1 = 6=7
(ML-1/7-6/7), orR0 = 1=5 andR1 = 4=5 (ML-1/5-
4/5), and 8-ary serial concatenated trellis coded modula-
tion (SC-TCM).

simulation results fortrellis coded modulation with convolutional codes(CC-TCM),multilevel coding(ML) and trellis coded
modulation with serial concatenated codes and iterative decoding(SC-TCM). A brief description of the encoding process
for the different coded modulation schemes is given before the discussion of these simulation results. For the corresponding
decoding processes the reader is referred to the literature.
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Figure 8. Encoder for the applied coded modulation schemes 4-ary-CC-TCM, 4-ary-ML-1/5-4/5, and 8-ary-SC-TCM.

The mapping of a watermark messagem onto a sequence of watermark letterdn depends on the coded modulation tech-
nique. However, in all schemes considered, the messagem is first mapped onto a binary sequenceb, with one element
bn 2 f0; 1g for each host-data elementxn. Fig. 8 depicts the block diagrams for the encoding ofb into d for 4-ary-CC-TCM,
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4-ary-ML-1/5-4/5, and 8-ary-SC-TCM. 4-ary-CC-TCM denotes the classical TCM proposed by Ungerboeck.7 The informa-
tion bitsb are encoded with a rate 1/2 convolutional code so that for each data elementxn, one out of four possible watermark
lettersdn is selected. A Viterbi decoder8 with the conditional probabilitiespy (ynjdn) as path weight can be used as decoder
for 4-ary-CC-TCM.

Multilevel coding, originally proposed by Imai and Hirakawa,9 is a combined coding and modulation method based on
binary component codes for the least-significant bitsd0 and the most-significant bitsd1 of the 4-ary lettersd. An important
issue in the design of multilevel codes is the choice of component codes and their code rates. Wachsmann et al.10 proposed
a technique for selecting the component code rates depending on the capacity of the equivalent binary input channels for
communicatingd0 andd1. Here, simulations for the rate assignment ofR0 = 1=5 andR1 = 4=5 (ML-1/5-4/5), andR0 = 1=7
andR1 = 6=7 (ML-1/7-6/7) are presented. A turbo code11 (TC) of rateR0 is applied for level 0, and a convolutional code
(CC) of rateR1 is used for level 1. Fig. 8(b) shows the encoding process for ML-1/5-4/5. A multi-stage decoder10 first decodes
the level 0 code. Next, the level 1 code is decoded, where the decoding results for level 0 can be already exploited.

Fig. 8(c) depicts the encoder for SC-TCM. Here, 8-ary modulation is used, where the information bitsb are first encoded
with a non-systematic rate 1/2 convolutional code. Next, the encoded sequence is interleaved and further encoded with a
systematic rate 2/3 convolutional code. The code design is equivalent to that by Vucetic et al.,12 however, here the output of
the second convolutional code is directly mapped on the 8-ary watermark lettersd. The decoder12 iteratively decodes the inner
and outer convolutional codes. The interleaver between both concatenated codes is important to break blocks of unreliably
detected bits. Consequently, the interleaver length is an important parameter for the performance of SC-TCM. Here, we used
an interleaver of length 20,000 for 10,000 information bitsb. The presented SC-TCM scheme is only one example for coded
modulation techniques with concatenated codes and iterative decoding algorithms. Improved results may be achievable by
using parallel concatenated codes and an optimized choice of component convolutional codes.

The simulation results in Fig. 7, measured for more than1; 000; 000 transmitted bits, demonstrate that bit-error rates around
10�5 are achieved by all considered coded modulation schemes for WNR> 9:3 dB. The best performance forpb < 10�5 was
achieved by SC-TCM, with a minimal required WNR� 8:3 dB. However, SC-TCM is also the most complex scheme with a
block length of 10,000 information bits. The results for ML coded modulation are obtained for information bit blocks of length
1,000, and are less than a dB higher than ST-TCM atpb < 10�5. We observe that the rate assignmentR0 = 1=5; R1 = 4=5
is superior at low error rates, and the rate assignmentR0 = 1=7; R1 = 6=7 is more appropriate at high error rates. CC-TCM
gives the worst results of all considered schemes. However, it is also the least complex scheme and thus might be an option for
practical applications. Ideally, SCS withR = 1 is possible for WNR> 6:7 dB. Thus, the discussed coded modulation schemes
come within1:6� 2:7 dB of an optimal coding scheme.

Chou et al.3 proposed a blind watermarking scheme where an optimization algorithm is used to design the codebookU .
They presented simulation results for different versions of their approach at bit-error rates ofpb � 10�5 and a watermark rate
R = 1 bit/element. Their best scheme operates at WNR� 10 dB. Thus, SCS combined with coded modulation outperforms
the approach of Chou et al.3 by about0:7� 1:7 dB.

4. LOW-RATE SCS WATERMARKING

In most watermarking applications, the distortion that can be introduced by an attacker into the watermarked datas will be at
least as large as the watermark embedding distortion. For the scenario depicted in Fig. 1, this means that a WNR of about0 dB
or less must be considered. For these distortion levels, binary SCS watermarking is sufficient. Thus, the watermark message
m, represented by a binary sequenceb, has to be encoded into a sequenced of binary watermark lettersdn 2 f0; 1g. In
order to achieve communication with low error rates, each bit ofb has to be embedded redundantly into the host datax. Here,
we investigate different methods for the redundant embedding ofb, and compare their performance for an AWGN attack as
depicted in Fig. 1.

4.1. SCS Watermarking with Repetition Coding

The simplest approach for the redundant embedding of the information bitsb into the host datax is the repeated embedding of
each bit. Let� denote therepetition factor, thus the sequence of watermark lettersd is � times longer thanb. The watermark
lettersd are embedded, transmitted and demodulated as described in Sec. 2. However, instead of deciding for each demodulated
valueyn what transmitted watermark letterdn is most likely, the decoder can estimate directly the most likely transmitted
watermark information bitbk from � different demodulated values iny. Without loss of generality, we assume that thekth
information bitbk has been embedded into the data elementsx�k ; x�k+1; : : : ; x�k+��1. For an AWGN attack, the demodulated
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valuesyn are independent identically distributed, so the decoder computes the probability of a transmitted information bit
bk = 1 via

p (bk = 1) =

�k+��1Q
n=�k

py (ynjdn = 1)

�k+��1Q
n=�k

py (ynjdn = 1) +
�k+��1Q
n=�k

py (ynjdn = 0)

: (4)

Finally, a hard estimatêbk of thekth information bit is obtained by

b̂k =

�
1 ; p (bk = 1) > 0:5;
0 ; p (bk = 1) � 0:5:

(5)

4.2. Spread-Transform SCS watermarking

A different approach to redundantly embed the informationb into host datax is called spread-transform (ST) watermarking.
ST watermarking was originally proposed by Chen and Wornell13 to improve binary dither modulation (DM) watermarking. In
ST watermarking, the watermark is not directly embedded into the host datax, but into the projectionxST of x onto a random
sequencet. Let� denote the spreading factor, meaning the number of host-data elementsxn belonging to one elementxSTk . For
simplicity, we assume that� is an integer value, although spread transforms with rational spreading factors can be implemented,
too. Further, we assume that� consecutive elements ofx are transformed into one element ofxSTk . Thus, the spread transform
can be computed by

xSTk =

�k+��1X
n=�k

xntn: (6)

Now, any algorithm can be applied to embed a watermark intoxST to obtainsST . Note that proper normalization of the
spreading vectort is assumed. The watermarked datas is computed by the inverse spread transform

sn = xn � xSTk tn + sSTk tn; (7)

wherek = nmod � . For watermark detection, the received datar has to be projected ontot, too. Thus demodulation and
decoding of the watermark information has to be performed on the transformed datarST , where

rSTk =
�k+��1X
n=�k

rntn: (8)

The basic idea behind ST watermarking is that any component of the channel noisev being orthogonal to the spreading
vectort does not impair watermark detection. Thus, an attacker, not knowing the exact spreading directiont, has to introduce
much larger distortions to impair a ST watermark as strong as a watermark embedded directly intox. For an AWGN attack, the
effective WNR� after ST with spreading factor� is given by

WNR� = WNR1 + 10 log10 �: (9)

Thus, doubling the spreading length� gives an additional power advantage of 3 dB for the watermark in the ST domain.

4.3. Comparison of SCS with Repetition Coding and ST-SCS

The bit-error ratepb for SCS watermarking with repetition coding or with ST-SCS after an AWGN attack have been measured
for different WNRs. Fig. 9 shows simulation results for� = 2; 4; 8 and� = 2; 4; 8, where plots with linear and logarithmic
axes for the error rate are provided. We observe that ST-SCS gives significantly lower error rates than SCS with repetition
coding at the same watermarking rate, meaning� = �. The predicted WNR gain of3 dB for the same detection reliability by
doubling� can be observed. However, the for SCS with repetition coding, the WNR gain is less than3 dB when� = 2. At
first glance, this result is surprising since repetition coding and bipolar transmission for conventional communication without
side information at the encoder, both give a3 dB advantage when� = � = 2. However, the observed effect can be explained
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Figure 9. Measured bit-error ratespb for ST-SCS communication and SCS watermarking with repetition coding. For identical
watermarking rates (spreading factor� = repetition factor�), ST-SCS gives lower error rates than SCS with repetition coding.

by examining the specific structure of the codebookU in SCS. The multiple representations of a single watermark letterdn by
several points in the signaling space leads to many nearest neighbors which can lead to detection errors. Fig. 10 shows a section
of the two-dimensional PDFs of the received datar in the case of an information bitbk = 0 for SCS with repetition coding with
� = 2; bright areas indicate high probabilities. The key sequencek has been set to zero for illustration purposes. The circles
and crosses depict the codebook entries corresponding to a transmitted watermark bitbk = 0 andbk = 1, respectively. Each
circle is surrounded by four near-by crosses. Fig. 11 shows the corresponding two-dimensional PDFs in the case of ST-SCS
with � = 2, where the spreading directiont was chosen to be the main diagonal. Obviously, any noise that is orthogonal to
t does not affect the decision whether the transmitted bit was 0 or 1. Further, each circle is surrounded only by two crosses.
Thus, the probability that AWGN pushes watermarked data into the area where a detection error occurs is lower for ST-SCS
than for SCS with repetition coding.
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Figure 10. Detection statistics for SCS with repetition
coding with� = 2.

y
1

y 2

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Figure 11. Detection statistics for ST-SCS with� = 2.

Attention: The advantage of ST-SCS over SCS with repetition coding is only possible if the spreading directiont is not
known to an attacker. Otherwise, an attacker would place all the noise in the directiont and the WNR-advantage vanishes.
Further, ST-SCS watermarking with large spreading factors� might be impractical since perfect synchronization of the complete
spreading vectort is necessary. In contrast, detection in the case of SCS with repetition coding is possible when only some of
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the watermarked data elements are synchronized. Another potential problem with large spreading factors� is that the host-data
power in the ST domain might become so low that the assumption that the host-data is approximately uniformly distributed in
the range of one quantizer cell no longer holds; this assumption is used in quantization based watermarking schemes like SCS
and DM. As a consequence, the power of the watermark can no longer be predicted by�2=12. However, this problem can be
avoided by using a key sequencek (Sec. 2) that acts as a dither sequence that ensures a quantization noise power of�2=12.

4.4. Achievable Rate of ST Watermarking and Optimal Spreading Factor�

ST-SCS watermarking should to be considered a different suboptimal approach to implementing a transmission scheme for
channel coding with side-information at the encoder (Fig. 1). Thus, the achievable rate of ST-SCS might be larger than that of
SCS. Note that ST-SCS can never perform worse than SCS since SCS is a special case of ST-SCS with� = 1. The performance
improvement by ST-SCS has already been shown in previous work.1 Here, we investigate the optimal spreading factor� for
attacks of differing noise power.

Let C� (WNR) denote the achievable rate of a specific watermarking scheme, e.g., an ideal Costa scheme,D-ary ST-SCS
watermarking, orD-ary ST-DM, with spreading factor� for a certain WNR.C1(WNR) is the achievable rate of the respective
scheme without ST, e.g.,D-ary SCS watermarking as shown forD = 2; : : : ; 5 in Fig. 6. The performance of ST watermarking
can be computed from that of the respective scheme without ST by

C� (WNR) =
C1(WNR� )

�
=

C1(WNR+ 10 log10 �)

�
: (10)

The termlog10 C� (WNR) decreases linearly with an increasing value oflog10 � . Thus, ST watermarking can give a gain only
if log10 C1(WNR) has a slope which is steeper than one decade per�WNR = 10 dB. For an ideal Costa scheme, this slope
is achieved only in the limit as WNR! �1; thus, the ST does not give a gain. However, for the suboptimal SCS and DM
watermarking, there exists a critical WNRcrit such that for all WNR< WNRcrit, the slope oflog10 C� (WNR) is steeper than
one decade per�WNR = 10 dB. Consequently, ST watermarking is useful for all WNR< WNRcrit, and the optimal spreading
factor is such that the effective WNR� = WNRcrit.

Fig. 12 shows the achievable rates of SCS, ST-SCS, DM, and ST-DM with logarithmic capacity axis. The curves clearly
demonstrate that ST is advantageous if the slope of the logarithmic achievable rate curves is larger than one decade per
�WNR = 10 dB. Since the achievable rates for SCS and DM watermarking are computed numerically, the corresponding
critical WNRcrit are also obtained numerically. We found that for SCS, WNRcrit;SCS = 0:01 dB, and for DM, WNRcrit;DM =
5:81 dB. Fig. 12 shows also that DM can be improved significantly for WNR< WNRcrit;DM, where for SCS only a minor gain
is accessible. Note that ST-DM performs worse than simple SCS for most practical WNRs. Also, there is a constant gain of
about1:8 dB for ST-SCS over ST-DM in the range of negative WNRs.
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Figure 12. Performance improvement by spread-
transform watermarking.

−20 −15 −10 −5 0 5
0

10

20

30

40

50

60

70

80

90

100

110

WNR [dB]

op
tim

al
 s

pr
ea

di
ng

 fa
ct

or
 τ

ST−SCS
ST−DM 

Figure 13. Optimal spreading factors� for different
WNRs (differently strong attacks).

Fig. 13 shows the optimal spreading factors� for ST-SCS and ST-DM at different WNRs. We assume for simplicity that
rational spreading factors� are implementable. We observe that for each WNR< 0 dB, the optimal spreading factor� for ST-
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DM is 3:8 times that of ST-SCS. Thus, ST-DM needs longer spreading vectors while giving poorer performance than ST-SCS.
Large� are not desirable in practice due to more complex synchronization and less host-data power in the ST domain.

4.5. SCS with State-of-the-Art Channel Coding

Repetition coding is known to be very inefficient. State-of-the-art error correction codes, e.g., turbo codes,11 outperform
repetition coding by far. Fig. 14 shows the measured bit-error rates for turbo coded SCS watermarking over an AWGN channel.
Turbo codes with coding ratesR = 1=2, R = 1=3, R = 1=5, andR = 1=7 and a random interleaver of lengthNi = 10; 000
were used. The shown bit-error rates reflect the typical behavior of turbo codes with random interleaving. The bit-error rate
pb decreases rapidly for a certain WNR, but does not decrease further thanpb � 10�5, which is denoted as error floor. This
error floor is mainly determined by codewords with low Hamming distance. We observe that the error floor increases for turbo
coding at lower code ratesR. This effect is again due to the multiple representation of SCS watermark letters in the signaling
space. Note that the error floor of turbo codes can be reduced by an improved interleaver design.14
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Figure 14. Turbo coded (TC) SCS with random in-
terleaver of length 10,000 and code ratesR = 1=2,
R = 1=3, andR = 1=5, andR = 1=7.
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the minimal WNR for that a specific coding technique
achieves a bit-error ratepb < 10�5.

The minimal WNRmin for that coded SCS watermarking gives bit-error rates ofpb � 10�5 is shown in Fig. 15, where the
actual rateR of a specific coded system and the maximal achievable rate are plotted logarithmically. We observe that turbo
coded SCS performs indeed close to the maximal achievable rate of SCS watermarking. The coding results forR = 1=2
andR = 1=3 can be translated to lower ratesR via ST watermarking, which is indicated by the straight lines. ST-SCS
watermarking with a rateR = 1=3 turbo code seems to be a very good choice for low-rate watermarking if any desired ST
length� is applicable. Fig. 15 shows also that turbo coded SCS combined with repetition coding is less efficient than ST-SCS.
Nevertheless, repetition coding might be useful in practice since it can be implemented in a very flexible way. Any received
data elementrn with embedded watermark bitbk increases the estimation reliability forb̂k, where for ST watermarking all data
elementsrn required for computation of the projectionrSTk must be available to the receiver.

5. SCS WATERMARKING PERFORMANCE FOR CONSTRAINED CODEWORD LENGTH

So far, the performance of SCS watermarking in the case of AWGN attacks has been evaluated either by the achievable rateR
or the measured bit-error ratespb for specific error-correction codes. Both evaluations are somewhat unsatisfying for practical
watermarking applications. The achievable rate of SCS watermarking at a given WNR can be obtained for infinitely long
codewords. However, at the very least, in practice the codeword lengthNc is limited by the number of host-data elements to be
watermarked. Further, simulation results for specific codes might be misleading since we cannot be sure that better performance
cannot be achieved by some other code of identical codeword lengthNc. To analyze the limits of a watermarking technology,
we are interested in the achievable performance ofanycoding scheme with a constrained codeword lengthNc. At present, we
are not able to provide such a limit. However, with the help of Gallager’s random coding exponent,15 there at least exists a
way to bound theword error ratepw for SCS with an average random code of codeword lengthNc.
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Gallager’s random coding exponentE(R) is defined by

E(R) = max
0���1

fE0(�) � �Rg; (11)

where for SCS watermarking

E0(�) = � log2

8<
:
Z
y

"X
d2D

p (d) (py (yjd))
1

1+�

#1+�
dy

9=
; (12)

with py (yjd) as defined in Sec. 2.

Then15 there exists a code of codeword lengthNc such thatpw � 2�NcE(R). E(R) depends on the probabilitiespy (yjd)
and thus for AWGN attacks, on the WNR. Therefore, it is possible to compute the minimum WNRmin for which a code with
pw � 2�NcE(R) exists. Note that nothing is said about the converse, meaning there could be a code that fulfills the upper bound
on pw for WNRs lower than WNRmin. Nevertheless, in practice the random coding exponent provides a tight bound on the
achievable performance of coding with a constrained codeword lengthNc.
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Figure 16. Achievable watermark rate for constrained codeword lengthNc

If we fix Nc andpw so thatE(R) = � 1
N
log2 pw, than the maximum rateR of SCS for a given WNR can be computed.

Fig. 16 shows results forpw = 10�4 and three different codeword lengthsNc = 30; 000, Nc = 3; 000, andNc = 300.
For a fixed rateR, a significantly higher WNR is required to achieve reliable detection with short codewords than with long
codewords. A loss of about3 dB in WNRmin for a certain rateR compared to the achievable rate of SCS must be tolerated
when reducing the codeword length toNc = 300. Equivalently, for a fixed WNR, a significant loss in achievable SCS rate must
be tolerated. This effect is particularly strong for negative WNRs, where the capacity curve has a flat slope. For instance, at
WNR = 0 dB, the rate of reliable SCS watermarking with codewords of lengthNc = 300 is only 0.1 bit/element, rather than
0.3 bit/element as predicted by the theoretically computed achievable rate of SCS.

Fig. 16 depicts also WNRmin for coded SCS watermarking with rateR = 1=3 achieving abit-error rate pb < 10�5,
where turbo codes (TC) and convolutional codes with different interleaver lengthsNi and memory lengths�, respectively, are
used. These experimental results show the same tendency as the theoretical results obtained with Gallager’s random coding
exponent. Turbo codes with short interleaver lengths, and thus short codeword lengths, perform significantly worse than those
with long interleaver lengths. The rateR = 1=3 turbo code with interleaver lengthNi = 100, which equals a codeword length
of Nc = 300, does not perform significantly better than a simple convolutional code with memory� = 9. The performance
of convolutional codes decrease with shorter memory of the encoder. This effect is related to the reduced performance of SCS
watermarking for reduced codeword lengthsNc of block codes.

6. CONCLUSION

SCS watermarking is a practical blind watermarking scheme that is particularly good for weak to moderately severe attacks.
In this paper, several practical aspects of SCS watermarking were discussed, where we focus on the performance of SCS
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watermarking facing an AWGN attack. The results for this attack can be translated directly into that for a GTC attack, which
was shown to be an optimal attack for white Gaussian host data. We showed that for high-rate watermarking, e.g., useful in
information-hiding applications, SCS combined with coded modulation achieves a rate of 1 bit/element at significantly lower
WNR than the scheme proposed by Chou et al.3 For low-rate watermarking, the performance of spread-transform (ST-)SCS
watermarking and SCS watermarking with repetition coding was compared. ST-SCS watermarking turned out to be superior.
This behavior results because, in SCS with repetition coding, the multiple representations of codewords for a single watermark
message produce many nearest neighbors in the codeword space. For positive WNR, the spread transform does not give a gain
over SCS without spread transform. For negative WNR the optimal spreading factor�opt is such that an effective WNR of
about0 dB is achieved in the spread-transform domain. Further, simulation results show that with turbo coding, performance
close to the achievable rate of SCS watermarking can be obtained. Finally, the effect of limited codeword lengthNc on the
performance of SCS watermarking was analyzed theoretically with help of Gallager’s random coding exponent, and practically
with simulations for turbo codes with different interleaver sizesNi and convolutional codes with different memory lengths�.
Particularly for negative WNRs, short codewords lead to a significant loss of achievable watermark rate.
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