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ABSTRACT

New blind digital watermarking schemes that are optimized for additive white Gaussian noise (AWGN) attacks have been
developed by several research groups within the last two years. Currently, the most efficient schemes, e.g., the scalar Costa
scheme (SCS), involve scalar quantization of the host signal during watermarking embedding and watermark reception. Reliable
watermark reception for these schemes is vulnerable to amplitude modification of the attacked host signal. In this paper, a
method for the estimation of possible amplitude modifications before SCS watermark detection is proposed. The estimation
is based on a securely embedded SCS pilot watermark. We focus on linear amplitude modifications, but investigate also the
extension to nonlinear amplitude modifications. Further, the superiority of our proposal over an estimation method based on a
spread-spectrum pilot watermark is demonstrated.

Keywords: blind digital watermarking, channel estimation

1. INTRODUCTION

Blind digital watermarking is the art of communicating a message by embedding it into multimedia data (host signal), and
decoding it without access to the original, non-watermarked host signal. Envisioned applications for such a method are copy
control or ownership verification. A blind watermarking scheme must be designed such that the watermarked signal has
subjective quality close to that of the original host signal and that the decoder can correctly decode the embedded message after
any attack that does not destroy the commercial value of the multimedia data.

Early blind watermarking schemes were built on the principle of spread spectrum (SS). Although this technique allows for
reliable communication even for strong attacks, blind detection of spread-spectrum watermarks suffers significantly from host
signal interference. In 1999, several researchers1{3 realized that the host signal can be considered as side information at the
watermark encoder, and thus improved blind watermarking schemes can be designed. A key paper in this field is the work by
Costa,4 which shows that for additive white Gaussian noise (AWGN) attacks blind watermarking can perform as well as if the
decoder had access to the original host signal. We5{7 developed a simplified practical watermarking scheme based on Costa’s
ideas, called ”scalar Costa scheme” (SCS), which performs over a large range of attack strengths significantly better than blind
spread-spectrum watermarking.

So far, the performance of SCS and related schemes has been mainly analyzed for AWGN attacks. However, in practical
watermarking applications, the attack is not constrained to AWGN attacks. One particularly interesting class of extended attacks
is (non-)linear amplitude modification. This class of attacks includes simple scaling of the watermarked signal, e.g. contrast
reduction for image data, or the addition of a constant DC value. A typical example for non-linear amplitude modification is
gamma-correction for image data. Blind spread-spectrum watermarking schemes are typically believed to survive such attacks
without significant losses. However, quantization based watermarking schemes, like SCS, are vulnerable against such amplitude
modifications. The SCS watermark decoder needs to estimate amplitude modifications for reliable watermark detection.

In this paper, we present a scheme for estimating linear amplitude modifications and simple parametrized non-linear am-
plitude modifications, e.g. gamma-correction, based on a securely embedded pilot sequence. Note that in watermarking appli-
cation the secure embedding of pilot sequences is essential, since, otherwise, an attacker could simply focus on removing the
embedded pilot sequence. Thus, we propose to embed a pilot sequence via secure SCS watermarking. The pilot sequence is
known to the watermark receiver and thus can be exploited to estimate any amplitude modifications. In particular, we propose
an estimation algorithm based on a Fourier analysis of the histograms of different parts of the received pilot samples.

SCS watermarking is briefly reviewed in Sec. 2 and the influence of amplitude modifications is highlighted. Our new
algorithm for estimating linear amplitude modifications is derived and investigated in Sec. 3. In Sec. 4, we demonstrate the
superiority of our new approach over an estimation based on SS pilot sequences. The extension of this work to simple non-linear
amplitude modifications is outlined in Sec. 5.

Further author information: Send correspondence to J. Eggers. Email: eggers@LNT.de
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2. SCS WATERMARKING AND AWGN AND AMPLITUDE SCALING ATTACK

We consider digital watermarking as a communication problem. Here, we assume that the watermark message is encoded into
a sequence of watermark lettersd of lengthLx. The elementsdn belong to aD-ary alphabetD = f0; 1; : : : ; D � 1g of size
D = jDj. In many practical cases, binary watermark letters (dn 2 D = f0; 1g) are used. The watermark encoder derives
from the encoded watermark messaged and the host datax an appropriate watermark sequencew, which is added to the host
data to produce the watermarked datas. w must be chosen such that the distortion betweenx ands is negligible. Next, an
attacker might modify the watermarked datas into datar to impair watermark communication. The attack is only constrained
with respect to the distortion betweenx andr. Finally, the decoder must be able to detect the watermark message from the
received datar. In blind watermarking schemes, the host datax are not available to the decoder but can be considered side
information to the encoder. The codebook used by the watermark encoder and decoder is randomized dependent on a keyk to
achieve secrecy of watermark communication. Here,x,w,s,r, andk are vectors of identical lengthLx, andxn,wn,sn,rn, and
kn refer to their respectiventh elements. Random variables are in Sans Serif fonts, e.g.,x for a random variable describing the
host signal.

Fig. 1 depicts a block diagram of blind watermark communication, where the attacker scales the watermarked datas by g
(usuallyg < 1) and introduces additive white Gaussian noise (AWGN)v, with v � N (ro�set; �

2
v
), that is

r = gs + v = g(x+w) + v: (1)

Ideally, the receiver knowsg andro�set and thus compensates for the DC offset by subtractingro�set and compensates for
scaling by division byg (if g 6= 0). In this paper, we characterize the attack strength by the effective watermark-to-noise power
ratioWNR = 10 log10(g

2�2
w
=�2

v
) dB.
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Figure 1. Watermark communication facing an attack by amplitude scaling and AWGN with meanro�set.

For the communication scenario depicted in Fig. 1, Costa4 showed theoretically that for Gaussian host data the watermark
capacity is independent of the host data variance�2

x
. The result is surprising since it shows that the host datax need not be

considered as interference at the decoder although the decoder does not knowx. Costa’s scheme involves a random codebook
U that is available at the encoder and decoder. Unfortunately, for good performanceU must be so large that neither storing it nor
searching it is practical. Thus, several research groups proposed suboptimal but practical versions of Costa’s scheme that are
based on dithered uniform scalar quantization1,2,5,8 where theLx-dimensional codebookU is constructed by a concatenation
of one-dimensional (scalar) codebooks. The derivation and realization of these schemes differ only slightly. We derived the
scalar Costa scheme (SCS) and presented a detailed capacity analysis5 and experimental results7 for SCS watermarking. SCS
watermarking will be considered throughout this paper, although any of the other proposals based on dithered scalar quantization
could be used with minor modifications as well.

In SCS, each of the watermark lettersdn is embedded into the corresponding host elementsxn. The encrypted scalar
component codebook used in SCS is given by

U1
n(kn) =

�
un =

�
ln +

dn
D

+ kn

�
��

���� dn 2 D; ln 2 Z
�
; (2)

where� and� are codebook parameters that are discussed below.U1
n(kn) can be described by the reconstruction points ofD

scalar uniform quantizers which are shifted against each other bydn=D. The given watermark letterdn selects one of these
quantizers. The SCS embedding rule for thenth element is given by

sn = xn + �

�
Q�

�
xn ��

�
dn
D

+ kn

��
+�

�
dn
D

+ kn

�
� xn

�
; (3)
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whereQ� f�g denotes scalar uniform quantization with step size�. The keyk is a pseudo-random sequence withkn 2 [0; 1).
The SCS embedding scheme depends on two parameters: the quantizer step size� and the scale factor�. Both parameters can
be jointly optimized to achieve a good trade-off between embedding distortion�2

w
and detection reliability for a given noise

variance�2
v

of an AWGN attack. Optimal values for� and� must be computed numerically.5

At the receiver, after compensation forg andro�set, the extraction rule for thenth element is

yn = Q� fr
0
n � kn�g+ kn�� r0n: (4)

For binary SCS,jynj � �=2, whereyn should be close to zero ifdn = 0 was sent, and close to��=2 for dn = 1. If no
compensation forg andro�set is applied, the proper codebook for SCS watermark reception is

Û1
n(kn) =

�
un =

�
ln +

dn
D

+ kn

�
��r + ro�set

���� dn 2 D; ln 2 Z
�
: (5)

Here,�r = g� is the scaled quantizer step size which has to be used for SCS detection.

Fig. 2 illustrates the effect of the considered amplitude scaling and AWGN attack on the PDF of the received data elements
rn for binary SCS watermarking. For better clarity, we assume a flat distribution of the host signal elementsxn over a number of
quantizer step sizes�. The upper plot of Fig. 2 depicts several periods of the PDF of the watermarked elementssn conditioned
on the transmitted watermark letterdn, andkn = 0. The lower plot shows the respective PDFs of the extracted received
elementsyn conditioned on the transmitted watermark letterdn, where the attack is amplitude scaling byg > 1 and AWGN
with nonzero meanro�set. The large crosses and circles in both plots indicate the codebook entries ofU1

n(0) for dn = 0 and
dn = 1. We observe thatU1

n(0) is no longer appropriate for SCS watermark reception ifg 6= 1 andro�set 6= 0.
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Figure 2. PDFs for SCS watermarked data before and after amplitude scaling and AWGN attack

3. ESTIMATION BASED ON SCS PILOT SEQUENCES

In the previous section, it has been assumed that the watermark receiver has perfect knowledge of the scale factorg and a
possible DC offsetro�set in the added noisev. Here, we propose a technique for estimating the attack channel parametersg
andro�set with the aid of a securely embedded pilot sequencedpilot = 0 of lengthLpilot. Note that estimation of�r = g� is
sufficient to enable SCS watermark reception.g can be derived when� is known to the receiver.
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The key idea behind our method for the estimation of�r andro�set is to analyze the histograms of the received samples
rn;pilot, whererpilot = (r0;pilot : : : rn;pilot : : : rLpilot�1;pilot) is the sequence of received samples with embedded pilot symbols
dpilot = 0. The suffix “pilot” is suppressed subsequently since only pilot samples are considered here. Note that for security,
the pilot is embedded dependent on a secure random key sequencek. Thus, without knowingk, no structure in the watermarked
signal is visible. However, the key-dependent embedding of the pilot sequence is also a problem for the estimation of�r and
ro�set. For SCS embedding, the key sequence is scaled with the embedding quantizer step size�r, but the proper quantizer
step size�r for reception still has to be found. Therefore, instead of exploiting the key sequencek directly, the histograms of
the samplesrn with keykn 2 Km are analyzed separately, where

Km =

�
k

����mM � k <
m+ 1

M

�
for m 2 f0; 1; : : : ;M � 1g andM > 1: (6)

Here,M denotes the number of different ranges considered for the key values. TheM conditional histograms will show local
maxima with a relative distance of�r. The absolute position of these maxima gives an estimate ofro�set.

3.1. Model for the Conditional PDFs of Received Pilot Elements

Let pr (r) denote the PDF of the received signal samplesrn. Here, IID signals are considered so that the sample indexn can
be neglected in the statistical analysis. It can be assumed thatpr (r) reflects more or less the host signal PDF (pr (r) � px (x))
if the embedding distortion is small, the host signal PDFpx (x) is sufficiently smooth, and a key withkn 2 [0; 1) is chosen.

First, a model for the conditional PDFpr (rjk 2 Km ) of the received signalrn for whichkn 2 Km is provided. The model
is motivated by the observation that each PDFpr (rjk 2 Km ) shows local maxima with a distance of�r and thatpr (rjk 2 Km )
is a valid conditional PDF. An exact characterization ofpr (rjk 2 Km ) is not necessary for our purpose. A sufficiently accurate
model is given by

pr (rjk 2 Km ) = pr (r)

�
1 + 
 cos

�
2�f0r ��0 �

2�

M

�
m+

1

2

���
; (7)

where
 is an appropriate constant with0 < 
 < 1. The model parametersf0 and�0 are directly related to the unknown
parameters�r andro�set. f0 determines the distance between two local maxima, and�0 determines their absolute position.
The exact relationship is given by

f0 =
1

�r
and �0 =

2�

�r
ro�set = 2�f0ro�set: (8)

Fig. 3 depicts an example for the given model. The local maxima of the conditional PDFspr (rjk 2 Km )with a relative distance
of �r = 10 are clearly visible. Further, it can be verified that the given model for the conditional PDFs fulfills the property

M�1X
m=0

pr (rjk 2 Km ) p (k 2 Km ) = pr (r) : (9)

3.2. Parameter Estimation Based on Fourier Analysis

The parametersf0 and�0 of the model given in (7) have to be computed from the given conditional PDFspr (rjk 2 Km )
and the given unconditional PDFpr (r). Fourier analysis is appropriate for this task sincef0 and�0 are the frequency and a
constant phase contribution of the cosine term in (7).

For themth conditional PDF, the normalized spectrumAm(f) is defined as

Am(f) = F

�
pr (rjk 2 Km )

pr (r)
� 1

�
= F

�
pr (rjk 2 Km )� pr (r)

pr (r)

�
= F

�

 cos

�
2�f0r ��0 �

2�

M

�
m+

1

2

���

=



2

h
ej(��0�

2�
M (m+ 1

2 ))Æ (f0 � f) + e�j(��0�
2�
M (m+ 1

2 ))Æ (f0 + f)
i
: (10)
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Figure 3. Total and conditional PDFs of the received pilot sequence.M = 3 different ranges for the key are distinguished. The
example is for a Gaussian distribution ofrn, and for the parameters�r = 10 andro�set = 0.

All M spectra can be combined in an elegant way due to the systematically different phase atAm(f0) andAm(�f0). TheM
spectraAm(f) are multiplied bye�j

2�
M
m prior to their summation to an overall spectrumA(f), that is

A(f) =

M�1X
m=0

Am(f) e
j 2�
M
m =




2
e�j(�0+

�
M )Æ (f0 � f)

M�1X
m=0

1

| {z }
=M

+



2
ej(�0+

�
M )Æ (f0 + f)

M�1X
m=0

ej
4�
M
m

| {z }
=0

=

M

2
e�j(�0+

�
M )Æ (f0 � f) : (11)

Thus, for the model given in (7),jA(f)j has only one peak, which is located exactly at the frequencyf0. Further,�0 =

� argfA(f0)g�
�
M . Note that the multiplication bye�j

2�
M
m is superior to a multiplication bye�j

2�
M
mf which would correspond

to a shift of the different conditional PDFs by�rM . In the latter case, the spectrumjA(f)j would have another peak atf = �f0
which increases the required sampling interval for the numerical computation of the conditional PDFs.

3.3. Implementation Based on Histograms of Received Pilot Elements
The exact PDFs of the received signal do not fit exactly to the model given in (7). Further, in practice, the PDFspr (rjk 2 Km )
andpr (r) can be only estimated from theLpilot pilot samplesr. This estimation is obtained from histograms withLbin bins
that cover the total range of all received samples. Note that removal of outliers is useful in practice. Based on these histograms,
Am(f) is computed atLDFT � Lbin discrete frequencies via a length-LDFT DFT. Here, a single peak in the spectrumA(f)
cannot be exptected due to estimation errors and the inaccuracy of the model (7). Nevertheless, forLpilot sufficiently large, a
dominating peak should occur atf0. Details of the outlined implementation are briefly described below.

First, the histogram̂pr [�] of all received pilot symbolsrpilot is computed, where� 2 f0; 1; : : : ; Lbin� 1g is the bin index.
The width& of the histogram bins is computed by

& =
rmax � rmin

Lbin
; (12)

where

rmin = min
n2f0;1;::: ;Lpilot�1g

rn;pilot; (13)

rmax = max
n2f0;1;::: ;Lpilot�1g

rn;pilot: (14)
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Thus, the�th bin covers the range[rmin + �&; rmin + (�+ 1)&).

Next, the conditional histogramŝpr;m [�] are computed, where the indexm indicates the considered range of key values
Km . The bins for these conditional histograms are identical to those used for the computation ofp̂r [�].
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Figure 4. The upper plots shows the scaled total histogramp̂r [�] =M and the conditional histogramŝpr ;m [�] of the received
pilot sequence forM = 3. The lower plot shows the normalized and windowed conditional PDFs that are input to the DFT
analysis.

Normalization of the conditional histogramŝpr;m [�] by division by the total histogram̂pr [�] is critical since empty bins
in the total histogram can occur. In such a case, the corresponding bins of all conditional histograms are also empty. Thus, no
useful information can be obtained from such a bin. Therefore, the modified total histogram

~pr[�] =

�
1 if p̂r [�] = 0;
p̂r [�] else;

(15)

is defined, which will be used for normalizing the conditional histograms. Further, bins that are not empty but contain only
a few samples provide little useful information as well. For Gaussian distributedrn, but also for many other typical signal
distributions, empty and almost empty bins occur mainly at the tails of the histograms. Therefore, it is useful to weight the

normalized histograms, e.g., with a von Hann windowhann[�] = 0:5
�
1� cos( 2�(�)

Lbin�1
)
�

. Note that an improved window

might be available if a priori information about the distribution ofrn exists. Fig. 4 depicts example histograms before and after
normalization. For better illustration, a long pilot sequenceLpilot = 10000 has been used.

Next, in analogy to (10), the discrete spectra

Am[l] = DFTLDFT

�
p̂r ;m [�]� p̂r [�] =M

~pr[�]=M
hann[�]

�
(16)

are computed. Note that the histograms can be considered discretized PDFs, where the sampling frequency isfA = 1
& . The

spectra of such discrete sequences are periodic and usually parameterized by the normalized frequency
 = 2� f
fA

= 2�&f .

Sampling these periodic spectra atLDFT equidistant frequencies
l =
2�

LDFT
l, for l 2 f0; : : : ; LDFT � 1g, defines the discrete

spectraAm[l].
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Finally, allM spectraAm[l] are combined to obtainA[l] corresponding to (11), that is

A[l] =

M�1X
m=0

Am[l] e
j 2�
M
m: (17)

FromA[l], the frequency indexl0 with maximumjA[l]j is determined, thus

l0 = arg max
l2f0;::: ;LDFT�1g

jA[l]j; (18)

and the desired decoder parameters�r andro�set can be estimated by

�̂r =
&LDFT

l0
; (19)

�̂0 = � argfA[l0]g �
�

M
; (20)

r̂o�set = rem(rmin +
&

2
+ �̂0

�̂r

2�
; �̂r): (21)

Here, rem(a; b) denotes the remainder of the divisiona=b. Note that the offset̂ro�set has to be computed relative to the center
of the first bin.

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

jA
[l
]j

r[l]

Figure 5. DFT spectrumjA[l]j obtained from the normalized histograms shown in Fig. 4

Fig. 5 showsjA[l]j for the normalized histograms in Fig. 4, whereLDFT = 1024. The dominating peak atl0 = &LDFT

�̂r
is

clearly visible. Note that for shorter pilot sequences, larger DFT components have to be expected for all indicesl 6= l0.

3.4. Estimation performance for differentLpilot

The described algorithm for the estimation of�r andro�set is dependent on the following set of parameters:

Lpilot : length of pilot sequence
Lbin : number of bins used for the histograms
M : number of different intervals for the key
LDFT : DFT length
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The estimation accuracy also depends on the document-to-watermark power ratio (DWR = 10 log10 �
2
x
=�2

w
dB), and on the

watermark-to-noise power ratio (WNR). In this paper, the estimation performance for different pilot lengthLpilot is discussed
for WNR = �10 dB; : : : ; 5 dB. This range forWNR covers the most interesting range of attack strengths for that SCS
watermarking might be useful. TheDWR has been fixed toDWR = 20 dB and the remaining parameters areLbin = 50,
LDFT = 1024, andM = 5. Experimental results that support this choice of parameters are given in.9

The influence of the numberLpilot of received pilot elements is studied experimentally. For simplicity,g = 1 and no offset
has been considered so that the estimator should ideally find�̂r = � and r̂o�set = 0. For the evaluation of the estimation
performance, three different figures of merit have been used:

relative error of�̂r : Æ�r =

r
E
n
(�̂r ��)2

o
�

; (22)

relative error ofro�set : Æroffset =

p
Ef(r̂o�set � 0)2g

�
; (23)

relative increase of bit-error probability: Æpb =
Efp̂b � pbg

pb
: (24)

Æ�r andÆroffset effectively measure the root of the mean squared estimation error relative to the exact step size�. These figures
of merit have been chosen since not only the variance of estimation errors is important, but also a possible biased estimate. The
relative increase of the bit-error probabilitypb for uncoded binary SCS reception with estimated�r andro�set is given byÆpb .
It is sufficient to measure the expected difference of the bit-error probability since imperfect estimates�r andro�set can only
increase the bit-error probability on average.pb of uncoded binary SCS is relatively high for the consideredWNRs. However,
many new parameters would have to be introduced for simulations with coded SCS communication, which would make a fair
comparison more difficult. Further, the increase ofpb can be considered a good indicator for the effect of estimation errors on
coded communication. The free parameters can be optimized only for a certain range of differentWNRs where here the focus
is onWNR = �5 dB toWNR = 0 dB. In particular the relative increase of the uncoded error probability (Æpb) shows a local
minimum for a certainWNR, since for large negativeWNRs, the estimation accuracy is decreased due to the strong noise, and
for highWNRs, the absolute decoding error is so low that any decoding error increases the relative decoding error significantly.

In general, it is desired to make the pilot sequence as short as possible, however, very short pilot sequences lead to an
inaccurate PDF estimation, and thus to incorrect estimations of�r andro�set. Fig. 6 shows the estimation performance for
Lpilot = 250; 500; 1000, and2000. Fig. 6.(a) depictsÆ�r which describes the relative estimation error of�r. ForLpilot =
2000, Æ�r decreases monotonically with increasingWNR, and is lower than 1% forWNR > �3 dB. Shorter pilot sequences
lead to an increased relative estimation error. However, for someWNR, robust estimation is no longer possible at all. Lowering
theWNR further introduces so much noise into the PDF estimation that the largest component of the spectrumjA[l]j appears
at any random index0 < l < LDFT � 1 = 1023. ForLpilot = 250, this effect occurs forWNR < �1 dB. ForLpilot = 500,
a minimumWNR of about -5dB is required. Fig. 6.(b) depictsÆroffset which follows in general the behavior ofÆ�r . The
resulting relative increase of the uncoded error rateÆpb is shown with linear and logarithmic axes in Fig. 6.(c) and Fig. 6.(d),
respectively.Æpb increases monotonically with decreasing pilot lengthLpilot. Further, it can be observed again that for some
low WNR the estimation algorithm starts to fail completely. Nevertheless, it is quite promising that even forLpilot = 500, Æpb
is lower than 2% for allWNR � �5 dB.

4. ESTIMATION BASED ON SS PILOT SEQUENCES

In the previous section, an estimation of the SCS receiver parameter�r based on a known SCS watermark has been proposed.
However, it is also possible to estimate the scale factorg, and thus�r = g�, with help of an additive spread-spectrum (SS)
pilot watermark. Here, we present an analysis of the estimation accuracyÆ�r , as defined in Sec. 3.4, when using SS pilot
watermarks and compare the result with those for SCS pilot watermarks.

We consider again the attack channel defined in (1). However, now, we assume thatw is a pseudo-noise sequence of length
Lw = Lpilot with zero mean (

PLpilot

n=1 wn = 0) and power�2
w
= 1

Lpilot

PLpilot

n=1 w2
n. Throughout this analysis, an IID host signal

w and additive noise signalv is assumed so thatxn = x andvn = v , respectively.w is known to the watermark receiver so
thatg can be estimated fromr based on the correlation̂c betweenr andw, that is

ĉ =
1

Lpilot

LpilotX
n=1

rnwn: (25)

8



−10 −5 0 5
10

−3

10
−2

10
−1

10
0

10
1

Æ �
r

WNR [dB]
−10 −5 0 5
0

0.05

0.1

0.15

0.2
Lpilot=2000
Lpilot=1000
Lpilot=500
Lpilot=250

Æ p
b

WNR [dB]
(a) (c)

−10 −5 0 5
10

−3

10
−2

10
−1

10
0

10
1

Æ r
o
ff
s
e
t

WNR [dB]
−10 −5 0 5

10
−3

10
−2

10
−1

10
0

Æ p
b

WNR [dB]
(b) (d)

Figure 6. Estimation performance for different pilot lengthsLpilot (DWR = 20 dB, Lbin = 50, M = 5).

The unbiased estimatêg of g derived fromĉ is derived as follows:

Efrng = Efg(xn + wn) + vng = gEfxg+ Efvg+ gwn (26)

Efĉg =
1

Lpilot

LpilotX
n=1

Efrngwn =
1

Lpilot

LpilotX
n=1

(gEfxg+ Efvg)wn +
g

Lpilot

LpilotX
n=1

w2
n

=
gEfxg+ Efvg

Lpilot

LpilotX
n=1

wn

| {z }
=0

+
g

Lpilot

LpilotX
n=1

w2
n =

g

Lpilot

LpilotX
n=1

w2
n = g�2

w
(27)

g =
Efĉg
�2
w

(28)

ĝ =
ĉ

�2
w

(29)

(29) describes the estimation rule forĝ using the SS pilot watermarkw that is known to the receiver. Next, the variance of
ĝ dependent on the pilot lengthLpilot is derived. For simplicity, we assume that the host signalx and the attack noisev are
mean-free (Efxg = 0, and Efvg = 0) so that the variance ofx andw is given by�2

x
= E

�
x
2
	

and�2
v
= E

�
v
2
	

, respectively.
The derivation of the variance Varfĝg is tedious but not difficult so that only the main steps are presented here:

E
�
ĉ
2	 = (g�2

w
)2 +

g2�2
x
+ �2

v

Lpilot
�2
w

(30)

Varfĉg = E
�
ĉ
2	� Efĉg2 =

g2�2
x
+ �2

v

Lpilot
�2
w

(31)

Varfĝg = Var

�
ĉ

�2
w

�
=

Varfĉg
(�2

w
)2

=
g2�2

x
+ �2

v

Lpilot�2w
=

g2�2
x
=�2

w
+ �2

v
=�2

w

Lpilot
: (32)
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We observe that Varfĝg depends on theWNR via�2
x
=�2

w
and on theDWR via�2

v
=�2

w
. The term�2

x
=�2

w
dominates for realistic

DWRs about 20dB andWNR > �10dB. Further, we observe that Varfĝg decreases with increasing pilot lengthLpilot.
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Figure 7. Estimation performance forLpilot=1000 (left) andLpilot=2000 (right). The performance for SS pilot watermarks
and SCS pilot watermarks is compared (DWR = 20 dB,M = 3,Lbin = 50). The experimental results are averaged over 1000
simulations.

Fig. 7 compares the achieved estimation accuracy using SS pilot watermarks and SCS pilot watermarks forLpilot = 1000
andLpilot = 2000. Note that the estimation accuracyÆ�r for SS pilot watermarks can be computed theoretically from Varfĝg
via

Æ�r =

p
Ef(�r � g�)2g

g�
=

p
Ef(ĝ�� g�)2g

g�
=

p
Ef(ĝ � g)2g

g
=

p
Varfĝg
g

: (33)

The results shown in Fig. 7 clearly demonstrate the superiority of the estimation algorithm based on SCS pilot watermarks. The
advantage of the SCS pilot watermarks stems from the reduced influence of host-signal interference on the estimation accuracy.

5. NONLINEAR AMPLITUDE MODIFICATION

So far, attacks by linear amplitude modifications have been investigated where the estimation of�r andro�set is sufficient
for reliable SCS watermark reception after such attacks. However, general nonlinear modifications of the signal amplitude are
much more difficult to handle due to the increased number of free parameters for the attack. Further, an objective signal quality
evaluation appropriate for nonlinear amplitude modification is often difficult to find. In this paper, we do not consider general
nonlinear amplitude modification, however, we demonstrate how the estimation algorithm for linear amplitude modifications
described in Sec. 3 can be exploited to invert nonlinear amplitude modifications that are parameterized by one scalar parameter.
For demonstration purpose, nonlinear amplitude modification by gamma correction is chosen, which is typical for image pro-
cessing. First, an overview of the corresponding channel model is given. Next, an outline of our proposed estimation algorithm
and some experimental results are presented.

5.1. Nonlinear Amplitude Modification by Gamma Correction

Gamma correction is the nonlinear mapping of image pixel intensitiesin that is important for compensating the characteristics
of image intensity reproduction of different camera and monitor devices.10 Here, gamma correction of 8-bit grayscale image
data is considered as an example for nonlinear amplitude modification, where the gamma correction is defined by

i0n = 255

�
in
255

�1=


: (34)

Note that
 = 1 results into an identity mapping. Fig. 8 shows the gamma correction for
 2 f0:5; 0:6; : : : ; 2g, which covers
slightly more than the common range of values for
.
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Figure 8. Gamma correction for grayscale 8-bit pixel values
i and
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Figure 9. Watermark receiver performance after SAWGN
attack and gamma correction with
 = 1:2. Upper plot:
SCS watermark detection fromLpilot = 1000 data elements.
Lower plot: uncoded binary SCS watermark bit-error rate
(BER).

It is possible to combine a gamma correction attack with amplitude scaling and additive noise, where the order of the
different operations has an influence on the effect of the attack. Here, we do not investigate all possible combinations of the
different attack operations, however, we restrict the discussion to the channel model shown in Fig. 10. We propose to invert the
effects of the attack before common SCS watermark decoding as much as possible with help of the estimates
̂, ĝ, andr̂o�set.
Thus, the problem is reduced to obtain the estimates
̂, ĝ, andr̂o�set from the host signal samples with an embedded SCS pilot
watermark.

Attack

� �� ��

x

Encoder
U

Decoder
U

d d̂

r̂o�set

s r r
0

v


 
̂�1

g ĝ�1

Figure 10. Watermark communication facing an attack by amplitude scaling and AWGN with meanro�set and additional
nonlinear amplitude modification by gamma correction.

5.2. Estimation of Gamma, Gain, and DC Offset for SCS Watermark Reception

Due to space constraints, only a brief outline of our estimation algorithm for
̂, ĝ, andr̂o�set is given. The basic approach is
a combination of the estimation ofg andro�set using the algorithm described in Sec. 3, SCS watermark detection from data
elements with the embedded SCS pilot watermark, and a search over all gamma corrections with
 2 f0:5; 0:6; : : : ; 2g.

SCS watermark detection is described in more detail in our previous publications.11,9 Note that watermark detection refers
to the decision whether the received datar is not watermarked with keyK (H0) or is watermarked with keyK (H1). We
formulate watermark detection as an hypothesis test with the hypothesesH0 andH1. Let Pr, with Pr 2 [0; 1], denote the
reliability that the received data elementsr are watermarked using the key sequencek derived from the keyK. Pr > 0:5
indicates an embedded SCS watermark (H1).
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We propose to estimate
, g, andro�set using the following procedure:

1. Inverse gamma correction using all
 2 f0:5; 0:6; : : : ; 2g is applied to the received data elementsrpilot.

2. For each
, the estimation algorithm described in Sec. 3 delivers the maximum histogram frequency componentjA[l0]j(
).
Note that all histograms are computed usingLbin = 256 bins covering the entire 8-bit range [0,255].

3. For each
, the SCS watermark detection reliabilityPr(
) is computed.

4. The estimatê
 is equal to
 with maximumjA[l0]j(
) andPr(
) > 0:5. The maximumjA[l0]j(
) for all 
 is considered
if Pr(
) � 0:5 for each
.

5. ĝ andr̂o�set are computed fromA[l0](
̂).

Fig. 9 shows some experimental results when using the outlined estimation of
̂, ĝ, andr̂o�set and the attack involves gamma
correction with
 = 1:2. The upper plot depicts the false positive and false negative decision error rate for SCS watermark
detection using the estimates
̂, ĝ, andr̂o�set. Note that the result is biased in the direction of more false positive errors due
to the search over several values for
. We are basically looking for somê
 that allows SCS watermark detection and thus
produce more false positive errors. In practice, compensation of this bias within the hypothesis test should be applied or SCS
watermark detection should be applied for received data elements that are not used within the estimation of
̂. We observe that
no decision errors are measured forWNR > �5dB within 1000 experiments. The lower plot of Fig. 9 shows the bit-error rate
(BER) for uncoded binary SCS watermarks. The BER for reception with perfect knowledge of the channel parameters
, g,
andro�set and the BER for reception using the corresponding estimates are compared. We observe that the BER increases only
very slightly for SCS watermark reception using the estimated channel parameters.

6. CONCLUSIONS

A method for estimating (non-)linear amplitude modifications of watermarked data based on securely embedded SCS (scalar
Costa scheme) pilot watermarks is proposed. The basic algorithm exploits the periodic structure in the histograms of received
SCS watermarked data that becomes visible by exploiting the watermark key sequence. The performance of the proposed
algorithm is described in detail for linear amplitude modifications. Experimental results show that accurate estimation of the
channel parameters requires 500 to 2000 pilot elements depending on the attack noise. It is also demonstrated that the estimation
based on SCS pilot watermarks is superior to an alternative approach using spread spectrum watermarks. Finally, the extension
of the estimation algorithm to parameterized nonlinear amplitude modifications is outlined.
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