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ABSTRACT

New blind digital watermarking schemes that are optimized for additive white Gaussian noise (AWGN) attacks have bee
developed by several research groups within the last two years. Currently, the most efficient schemes, eatpy irsta
scheme (SCS), involve scalar quantization of the host signal during watermarking embedding and watermark reception. Reliak
watermark reception for these schemes is vulnerable to amplitude modification of the attacked host signal. In this paper,
method for the estimation of possible amplitude modifications before SCS watermark detection is proposed. The estimatic
is based on a securely embedded SCS pilot watermark. We focus on linear amplitude modifications, but investigate also t
extension to nonlinear amplitude modifications. Further, the superiority of our proposal over an estimation method based on
spread-spectrum pilot watermark is demonstrated.
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1. INTRODUCTION

Blind digital watermarking is the art of communicating a message by embedding it into multimedia data (host signal), anc
decoding it without access to the original, non-watermarked host signal. Envisioned applications for such a method are coj
control or ownership verification. A blind watermarking scheme must be designed such that the watermarked signal he
subjective quality close to that of the original host signal and that the decoder can correctly decode the embedded message &
any attack that does not destroy the commercial value of the multimedia data.

Early blind watermarking schemes were built on the principle of spread spectrum (SS). Although this technique allows fo
reliable communication even for strong attacks, blind detection of spread-spectrum watermarks suffers significantly from ho
signal interference. In 1999, several researchén®alized that the host signal can be considered as side information at the
watermark encoder, and thus improved blind watermarking schemes can be designed. A key paper in this field is the work |
Costa? which shows that for additive white Gaussian noise (AWGN) attacks blind watermarking can perform as well as if the
decoder had access to the original host signaf> ¥Mdeveloped a simplified practical watermarking scheme based on Costa’s
ideas, called "salar @sta gheme” (SCS), which performs over a large range of attack strengths significantly better than blind
spread-spectrum watermarking.

So far, the performance of SCS and related schemes has been mainly analyzed for AWGN attacks. However, in practic
watermarking applications, the attack is not constrained to AWGN attacks. One particularly interesting class of extended attac
is (non-)linear amplitude modification. This class of attacks includes simple scaling of the watermarked signal, e.g. contra:
reduction for image data, or the addition of a constant DC value. A typical example for non-linear amplitude modification is
gamma-correction for image data. Blind spread-spectrum watermarking schemes are typically believed to survive such attac
without significant losses. However, quantization based watermarking schemes, like SCS, are vulnerable against such amplitt
modifications. The SCS watermark decoder needs to estimate amplitude modifications for reliable watermark detection.

In this paper, we present a scheme for estimating linear amplitude modifications and simple parametrized non-linear ar
plitude modifications, e.g. gamma-correction, based on a securely embedded pilot sequence. Note that in watermarking ap
cation the secure embedding of pilot sequences is essential, since, otherwise, an attacker could simply focus on removing
embedded pilot sequence. Thus, we propose to embed a pilot sequence via secure SCS watermarking. The pilot sequenc
known to the watermark receiver and thus can be exploited to estimate any amplitude modifications. In particular, we propo:
an estimation algorithm based on a Fourier analysis of the histograms of different parts of the received pilot samples.

SCS watermarking is briefly reviewed in Sec. 2 and the influence of amplitude modifications is highlighted. Our new
algorithm for estimating linear amplitude modifications is derived and investigated in Sec. 3. In Sec. 4, we demonstrate tr
superiority of our new approach over an estimation based on SS pilot sequences. The extension of this work to simple non-line
amplitude modifications is outlined in Sec. 5.
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2. SCS WATERMARKING AND AWGN AND AMPLITUDE SCALING ATTACK

We consider digital watermarking as a communication problem. Here, we assume that the watermark message is encoded i
a sequence of watermark lettetof length L. The elementd,, belong to aD-ary alphabeD = {0,1,...,D — 1} of size

D = |DJ. In many practical cases, binary watermark lettets € D = {0,1}) are used. The watermark encoder derives
from the encoded watermark messaband the host data an appropriate watermark sequeregwhich is added to the host
data to produce the watermarked dataw must be chosen such that the distortion betweemds is negligible. Next, an
attacker might modify the watermarked dateto datar to impair watermark communication. The attack is only constrained
with respect to the distortion betweanandr. Finally, the decoder must be able to detect the watermark message from the
received data. In blind watermarking schemes, the host datare not available to the decoder but can be considered side
information to the encoder. The codebook used by the watermark encoder and decoder is randomized dependektton a key
achieve secrecy of watermark communication. Here;,s,r, andk are vectors of identical length,,, andz,, ,w,,s,,r,, and

k., refer to their respectiveth elements. Random variables are in Sans Serif fonts xefgr,a random variable describing the
host signal.

Fig. 1 depicts a block diagram of blind watermark communication, where the attacker scales the watermarkbyg gata
(usuallyg < 1) and introduces additive white Gaussian noise (AWGNYith v ~ N (romset, 02), that is

r=gs +v=g(x+w)+v. ()

Ideally, the receiver knowg andr,gs.¢ and thus compensates for the DC offset by subtractjgg. and compensates for
scaling by division by (if g # 0). In this paper, we characterize the attack strength by the effective watermark-to-noise power
ratio WNR = 10log,,(g%02 /o2) dB.
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Figure 1. Watermark communication facing an attack by amplitude scaling and AWGN with mgan

For the communication scenario depicted in Fig. 1, Costmwed theoretically that for Gaussian host data the watermark
capacity is independent of the host data variasite The result is surprising since it shows that the host stateed not be
considered as interference at the decoder although the decoder does nat Kbasta's scheme involves a random codebook
U thatis available at the encoder and decoder. Unfortunately, for good perfortdamast be so large that neither storing it nor
searching it is practical. Thus, several research groups proposed suboptimal but practical versions of Costa’s scheme that
based on dithered uniform scalar quantizatibn® where theL ,-dimensional codebod¥ is constructed by a concatenation
of one-dimensional (scalar) codebooks. The derivation and realization of these schemes differ only slightly. We derived th
scalar sta_ gsheme (SCS) and presented a detailed capacity arnalysisexperimental resultéor SCS watermarking. SCS
watermarking will be considered throughoutthis paper, although any of the other proposals based on dithered scalar quantizat
could be used with minor modifications as well.

In SCS, each of the watermark lettets is embedded into the corresponding host elemepts The encrypted scalar
component codebook used in SCS is given by

Ul (k,) = {un = (ln + % + kn> aA

dneD,lneZ}, (2)

wherea andA are codebook parameters that are discussed balbfit,,) can be described by the reconstruction point®of
scalar uniform quantizers which are shifted against each othdy, pp. The given watermark lettef, selects one of these
guantizers. The SCS embedding rule for thilke element is given by



whereQa {-} denotes scalar uniform quantization with step sizeThe keyk is a pseudo-random sequence withe [0, 1).
The SCS embedding scheme depends on two parameters: the quantizer stepraizthe scale facter. Both parameters can
be jointly optimized to achieve a good trade-off between embedding disterfjcand detection reliability for a given noise
variancer2 of an AWGN attack. Optimal values fax anda must be computed numericalty.

At the receiver, after compensation fpandrg;es, the extraction rule for theth element is
Yn = QA {rl, — knAY + kA — 1. 4)

For binary SCS|y,| < A/2, wherey,, should be close to zero if,, = 0 was sent, and close tdA/2 for d,, = 1. If no
compensation fog andr.gseq IS applied, the proper codebook for SCS watermark reception is

« d,,
urll(kn) = {un = (ln + 3 + kn) QA + Tofset

dneD,lneZ}. (5)

Here,A, = gA is the scaled quantizer step size which has to be used for SCS detection.

Fig. 2 illustrates the effect of the considered amplitude scaling and AWGN attack on the PDF of the received data elemen
ry, for binary SCS watermarking. For better clarity, we assume a flat distribution of the host signal eleyn@rgsa number of
guantizer step size&. The upper plot of Fig. 2 depicts several periods of the PDF of the watermarked elemeatwitioned
on the transmitted watermark lettdr,, andk, = 0. The lower plot shows the respective PDFs of the extracted received
elementsy,, conditioned on the transmitted watermark letdgr where the attack is amplitude scaling y> 1 and AWGN
with nonzero meam,gse;. The large crosses and circles in both plots indicate the codebook enttigsmffor d,, = 0 and
d, = 1. We observe thdt}! (0) is no longer appropriate for SCS watermark receptign# 1 andrgse; # 0.
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Figure 2. PDFs for SCS watermarked data before and after amplitude scaling and AWGN attack

3. ESTIMATION BASED ON SCS PILOT SEQUENCES

In the previous section, it has been assumed that the watermark receiver has perfect knowledge of the soalenthetor
possible DC offset, e in the added noise. Here, we propose a technique for estimating the attack channel parameters
andrase; With the aid of a securely embedded pilot sequedigg, = 0 of length L,i1.¢. Note that estimation ah, = gA is
sufficient to enable SCS watermark receptigiean be derived when is known to the receiver.



The key idea behind our method for the estimatiom\efandrgset iS to analyze the histograms of the received samples
Tn,pilots WNET€r b0t = (70 pilot - - - Tn,pilot - - - TLu0 —1,pilot) IS the sequence of received samples with embedded pilot symbols
dpiler = 0. The suffix “pilot” is suppressed subsequently since only pilot samples are considered here. Note that for security
the pilot is embedded dependent on a secure random key seduértags, without knowingk, no structure in the watermarked
signal is visible. However, the key-dependent embedding of the pilot sequence is also a problem for the estimatemdof
rofiset- FOr SCS embedding, the key sequence is scaled with the embedding quantizer step biatethe proper quantizer
step sizeA,. for reception still has to be found. Therefore, instead of exploiting the key seqkedioectly, the histograms of
the samples,, with key k,, € K,,, are analyzed separately, where

an:{k‘%gk<m7+1} for m € {0,1,...,M — 1} andM > 1. (6)

Here, M denotes the number of different ranges considered for the key valuesd Tdwnditional histograms will show local
maxima with a relative distance df,.. The absolute position of these maxima gives an estimatgof .

3.1. Model for the Conditional PDFs of Received Pilot Elements

Let p, (r) denote the PDF of the received signal samplgsHere, 11D signals are considered so that the sample indean
be neglected in the statistical analysis. It can be assumeg,thgtreflects more or less the host signal PRF(() ~ px (z))
if the embedding distortion is small, the host signal BRFz) is sufficiently smooth, and a key with), € [0,1) is chosen.

First, a model for the conditional PO¥; (r|k € K,,, ) of the received signal, for whichk,, € K, is provided. The model
is motivated by the observation that each RRFr|k € K, ) shows local maxima with a distanceAf. and thap, (r|k € K, )
is a valid conditional PDF. An exact characterizatiompfr|k € KK, ) is not necessary for our purpose. A sufficiently accurate
model is given by

pr(rlk € Kpy,) = p, (1) <1+ycos <27rf0r— ®y — %r <m+ %))) , (7

where~ is an appropriate constant with< y < 1. The model parameter and®, are directly related to the unknown
parameters\, andr.gses- fo determines the distance between two local maxima,d&andetermines their absolute position.
The exact relationship is given by

1

2m
fo= A and &, = A_rof‘fset = 27 foToffset - )
r r

Fig. 3 depicts an example for the given model. The local maxima of the conditionalRDFB € K, ) with a relative distance
of A, = 10 are clearly visible. Further, it can be verified that the given model for the conditional PDFs fulfills the property

M—-1

> p(rlk € Kp)p (k€ Kn)=p,(r). €)

m=0

3.2. Parameter Estimation Based on Fourier Analysis

The parameterg, and &, of the model given in (7) have to be computed from the given conditional RRGESE € K,,,)
and the given unconditional PD¥; (r). Fourier analysis is appropriate for this task sirffgeand ®, are the frequency and a
constant phase contribution of the cosine term in (7).

For themth conditional PDF, the normalized spectrutp, (f) is defined as

1 - (PR [P o)
- % [ef'(—%—%(m%))(s(fo — ) 4 ei(R—F (mtE)) 5 (£, +f)} _ (10)
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Figure 3. Total and conditional PDFs of the received pilot sequei¢e= 3 different ranges for the key are distinguished. The
example is for a Gaussian distributionsgf, and for the parameters, = 10 androgse; = 0.

All M spectra can be combined in an elegant way due to the systematically different pHasgf@tand A,,,(— fo). The M
spectrad,, (f) are multiplied bye=7 % ™ prior to their summation to an overall spectrutif), that is

M-1 M-1 M-1
A = 3 Anpelim = Tt E) s (fy - ) 301+ 2Pt R s (S 1) Y I
m=0 2 m=0 2 m=0
=M =0
= WTMe*J'(@ﬁﬁ)(s(fo —f). (11)

Thus, for the model given in (7)A(f)| has only one peak, which is located exactly at the frequéfacyFurther,®, =
—arg{A(fo)}—1z- Note that the multiplication by 437 ™ is superior to a multiplication by 7 3 ™/ which would correspond
to a shift of the different conditional PDFs k%,ﬂ In the latter case, the spectrys( f)| would have another peak at= — f,
which increases the required sampling interval for the numerical computation of the conditional PDFs.

3.3. Implementation Based on Histograms of Received Pilot Elements

The exact PDFs of the received signal do not fit exactly to the model given in (7). Further, in practice, the PFs K, )

andp;, (r) can be only estimated from thg,;;o; pilot samples. This estimation is obtained from histograms with;, bins

that cover the total range of all received samples. Note that removal of outliers is useful in practice. Based on these histogran
A, (f) is computed al.ppr > Ly, discrete frequencies via a lengihyrr DFT. Here, a single peak in the spectrutf)

cannot be exptected due to estimation errors and the inaccuracy of the model (7). Neverthelgss; frfficiently large, a
dominating peak should occur #. Details of the outlined implementation are briefly described below.

First, the histogranj, [] of all received pilot symbols,., is computed, where € {0,1,. .., Ly, — 1} is the bin index.
The widthg of the histogram bins is computed by

Tmax — T'min
=— (12)
Lyin
where
Tmin = min Tn,piloty (13)

nef{0,1,... ,Lpiot—1}

Tmax = max T'n,pilot- (14)
nE{O,l,... 7Lpilot 71}
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Thus, thexth bin covers the rangemin + <, "min + (£ + 1)5).

Next, the conditional histograngs ,, [x] are computed, where the index indicates the considered range of key values
K, . The bins for these conditional histograms are identical to those used for the computaidu| of
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Figure 4. The upper plots shows the scaled total histogfafr] /M and the conditional histograngs ,,, [«] of the received

pilot sequence fod/ = 3. The lower plot shows the normalized and windowed conditional PDFs that are input to the DFT
analysis.

Normalization of the conditional histograms.,, [«] by division by the total histogram, [«] is critical since empty bins
in the total histogram can occur. In such a case, the corresponding bins of all conditional histograms are also empty. Thus,
useful information can be obtained from such a bin. Therefore, the modified total histogram

Puli] = { L dE=o (15)

is defined, which will be used for normalizing the conditional histograms. Further, bins that are not empty but contain only
a few samples provide little useful information as well. For Gaussian distribytedut also for many other typical signal

distributions, empty and almost empty bins occur mainly at the tails of the histograms. Therefore, it is useful to weight the
normalized histograms, e.g., with a von Hann windewin[x] = 0.5 (1 — cos(%(’j)l)). Note that an improved window
might be available if a priori information about the distribution-gfexists. Fig. 4 depicts example histograms before and after
normalization. For better illustration, a long pilot sequehgg,, = 10000 has been used.

Next, in analogy to (10), the discrete spectra

Prom [6] = P [K] /M
pr[K]/M

are computed. Note that the histograms can be considered discretized PDFs, where the sampling freﬁvueﬁcyisThe
spectra of such discrete sequences are periodic and usually parameterized by the normalized fﬂequen% = 2n¢f.

Sampling these periodic spectralaipr equidistant frequencig®;, = %l, forl € {0,..., Lprr — 1}, defines the discrete
spectrad,, [l].

Apll] = DFTL,. { hann[n]} (16)



Finally, all M spectrad,, [l] are combined to obtaiA[l] corresponding to (11), that is

-1

M
Al =" Apl]edFm, (17)

=0
From A[l], the frequency indek, with maximum|A[l]| is determined, thus

— A 1
lo argle{m_fr,lggFT_l}l (11, (18)

and the desired decoder paramet®rsandr.gse; Can be estimated by

Ar = gL;)FT ) (19)
0
A ™
oy = —arg{A[l]} - i (20)
LA,
Poffset = I‘ern(rmin + % + ‘I’oga A’l‘) (21)

Here, renta, b) denotes the remainder of the divisiefb. Note that the offset,g. has to be computed relative to the center
of the first bin.
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Figure 5. DFT spectrum A[!]| obtained from the normalized histograms shown in Fig. 4

1000

Fig. 5 showdg A[l]| for the normalized histograms in Fig. 4, whdigrr = 1024. The dominating peak d§ = ‘LAﬂ is
clearly visible. Note that for shorter pilot sequences, larger DFT components have to be expected for all #Adices

3.4. Estimation performance for different Ly,
The described algorithm for the estimation/f andr, g IS dependent on the following set of parameters:

Lpies  :  length of pilot sequence

Lyin . number of bins used for the histograms
M . number of different intervals for the key
Lprr : DFT Iength



The estimation accuracy also depends on the document-to-watermark poweb#&tidv £ 101log,, 02 /02 dB), and on the
watermark-to-noise power rati®{NR). In this paper, the estimation performance for different pilot lerdggh, is discussed

for WNR = —10 dB,...,5 dB. This range forWNR covers the most interesting range of attack strengths for that SCS
watermarking might be useful. THBWR has been fixed tbWR = 20 dB and the remaining parameters drg,, = 50,
Lprr = 1024, andM = 5. Experimental results that support this choice of parameters are given in.

The influence of the numbét,;;., Of received pilot elements is studied experimentally. For simpligity, 1 and no offset

has been considered so that the estimator should ideall;éfind; A and7,get = 0. For the evaluation of the estimation
performance, three different figures of merit have been used:

relative error ofA, :  da, = X , (22)
, E{(Fore: —0)2
relative error ofrofset :  Opopp., = {(TOZS“ ) }, (23)
. . . E{p, —
relative increase of bit-error probability 4, = M. (24)
Db

da, andd, ..., effectively measure the root of the mean squared estimation error relative to the exact stepridiese figures

of merit have been chosen since not only the variance of estimation errors is important, but also a possible biased estimate. 1
relative increase of the bit-error probabiljty for uncoded binary SCS reception with estimatedandr,gset, is given byd,, .

It is sufficient to measure the expected difference of the bit-error probability since imperfect estinatedr g, Can only
increase the bit-error probability on averagg.of uncoded binary SCS is relatively high for the considél&dR.s. However,

many new parameters would have to be introduced for simulations with coded SCS communication, which would make a fa
comparison more difficult. Further, the increas@gftan be considered a good indicator for the effect of estimation errors on
coded communication. The free parameters can be optimized only for a certain range of dWwéiBstwhere here the focus
isonWNR = —5 dB to WNR = 0 dB. In particular the relative increase of the uncoded error probabilify 6hows a local
minimum for a certailZWNR, since for large negativd/NRs, the estimation accuracy is decreased due to the strong noise, and
for high WNRs, the absolute decoding error is so low that any decoding error increases the relative decoding error significantl

In general, it is desired to make the pilot sequence as short as possible, however, very short pilot sequences lead to
inaccurate PDF estimation, and thus to incorrect estimations,.aindr.gse;. Fig. 6 shows the estimation performance for
Ly = 250,500,1000, and2000. Fig. 6.(a) depictda, which describes the relative estimation errorof. For Ly, =
2000, 0, decreases monotonically with increasMWgNR, and is lower than 1% foWNR > —3 dB. Shorter pilot sequences
lead to an increased relative estimation error. However, for S8IN&, robust estimation is no longer possible at all. Lowering
the WNR further introduces so much noise into the PDF estimation that the largest component of the spéEifwappears
at any random indef < I < Lppr — 1 = 1023. For Lyt = 250, this effect occurs foWNR < —1 dB. For Ly, = 500,

a minimumWNR of about -5dB is required. Fig. 6.(b) depici._ .., which follows in general the behavior 6 .. The
resulting relative increase of the uncoded error gteis shown with linear and logarithmic axes in Fig. 6.(c) and Fig. 6.(d),
respectively.d,, increases monotonically with decreasing pilot lenff,.. Further, it can be observed again that for some
low WNR the estimation algorithm starts to fail completely. Nevertheless, it is quite promising that evggfp= 500, 6,,

is lower than 2% for alWNR > —5 dB.

4. ESTIMATION BASED ON SS PILOT SEQUENCES

In the previous section, an estimation of the SCS receiver parahetessed on a known SCS watermark has been proposed.
However, it is also possible to estimate the scale fagtand thusA,. = gA, with help of an additive spread-spectrum (SS)
pilot watermark. Here, we present an analysis of the estimation accéika¢yas defined in Sec. 3.4, when using SS pilot
watermarks and compare the result with those for SCS pilot watermarks.

We consider again the attack channel defined in (1). However, now, we assumeisteapseudo-noise sequence of length
Ly, = Lyiio With zero mean}jﬁ;“f’” w,, = 0) and powep?, = 1,1 - Eﬁg“f“ w?. Throughout this analysis, an IID host signal

w and additive noise signal is assumed so that, = x andv,, = v, respectivelyw is known to the watermark receiver so
thatg can be estimated frombased on the correlatiarbetween andw, that is

Lpitot
Wy - (25)
n=1

1

Lpitot

¢ =
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Figure 6. Estimation performance for different pilot lengthsijot (DWR = 20 dB, Ly, = 50, M = 5).

The unbiased estimateof g derived fromé is derived as follows:

E{rn} = E{gl+wn)+va}=gE{x}+E{v}+guw, (26)
Lpiiot Lpiiot Lpitot
. 1 1
E{e} = < > E{rn}wn =2 > (E{x} + E{v}w, + > wp
pilot n—1 pilot ne1 pllot ne1
Lpilot Lpilot Lpilot
gE{x} +E{v} - - 2 2
— w w.,., = O'W 27
p110t Z pllot n; pllot n;l " g ( )
W—/
=0
E{¢
9 = 0{2 ) (28)
. ¢
i= (29)

(29) describes the estimation rule fpmusing the SS pilot watermank that is known to the receiver. Next, the variance of
g dependent on the pilot lengily,;;,; is derived. For simplicity, we assume that the host signahd the attack noise are
mean-free (§x} = 0, and E{v} = 0) so that the variance of andw is given byo? = E {x*} ando2 = E {v*}, respectively.
The derivation of the variance V@g} is tedious but not difficult so that only the main steps are presented here:

E{e?} = (go2)? +M03 (30)
Lp110t
Var(e) = E{e)-Efef =2 % (31)
Lp110t
5 ¢ Var{¢} g’} +o, _ g’o3/o, +au]o,
Var = Varl —\ = — x v _ x/Ow v/ 0w 32
&} )l =r = Ly (32)



We observe that Vg } depends on th& NR viac2 /o2 and on th@WR viao?2/o2. The termo?2 /o2, dominates for realistic
DWRs about 2@1B andWNR > —10dB. Further, we observe that V@ } decreases with increasing pilot lendtpiiot.-
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O SS pilot (experimental) O SS pilot (experimental)

—— SS pilot (theoretic)

—%— SCS pilot (experimental) —%— SCS pilot (experimental)

10° : 107° :
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Figure 7. Estimation performance fak i1,,=1000 (left) andL1,:=2000 (right). The performance for SS pilot watermarks
and SCS pilot watermarks is compar&@WR = 20 dB, M = 3, Ly, = 50). The experimental results are averaged over 1000
simulations.

Fig. 7 compares the achieved estimation accuracy using SS pilot watermarks and SCS pilot watermagris forl000
andLpiie, = 2000. Note that the estimation accuraty, for SS pilot watermarks can be computed theoretically from{¥gr
via

5o = VE{A-—gA?}  VE{(gA-gA)?} _ VE{(@ -9} _ VVer{g}
A, = = = = .
gA gA g g

The results shown in Fig. 7 clearly demonstrate the superiority of the estimation algorithm based on SCS pilot watermarks. Tt
advantage of the SCS pilot watermarks stems from the reduced influence of host-signal interference on the estimation accure

(33)

5. NONLINEAR AMPLITUDE MODIFICATION

So far, attacks by linear amplitude modifications have been investigated where the estimatioarmd 7,0, IS sufficient

for reliable SCS watermark reception after such attacks. However, general nonlinear modifications of the signal amplitude a
much more difficult to handle due to the increased number of free parameters for the attack. Further, an objective signal quall
evaluation appropriate for nonlinear amplitude modification is often difficult to find. In this paper, we do not consider general
nonlinear amplitude modification, however, we demonstrate how the estimation algorithm for linear amplitude modification:
described in Sec. 3 can be exploited to invert nonlinear amplitude modifications that are parameterized by one scalar parame
For demonstration purpose, nonlinear amplitude modification by gamma correction is chosen, which is typical for image prc
cessing. First, an overview of the corresponding channel model is given. Next, an outline of our proposed estimation algorithi
and some experimental results are presented.

5.1. Nonlinear Amplitude Modification by Gamma Correction

Gamma correction is the nonlinear mapping of image pixel intengitiéisat is important for compensating the characteristics
of image intensity reproduction of different camera and monitor devtedere, gamma correction of 8-bit grayscale image
data is considered as an example for nonlinear amplitude modification, where the gamma correction is defined by

, 7 /v
by = 2 LU . 4
iy, 55 <255> (34)

Note thaty = 1 results into an identity mapping. Fig. 8 shows the gamma correction &[0.5,0.6, ... ,2}, which covers
slightly more than the common range of values+or
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Figure 8. Gamma correction for grayscale 8-bit pixel values Figure 9. Watermark receiver performance after SAWGN

iandy € {0.5,0.6,...,2} attack and gamma correction with = 1.2. Upper plot:
SCS watermark detection frofy,ii,, = 1000 data elements.
Lower plot: uncoded binary SCS watermark bit-error rate
(BER).

It is possible to combine a gamma correction attack with amplitude scaling and additive noise, where the order of th
different operations has an influence on the effect of the attack. Here, we do not investigate all possible combinations of tf
different attack operations, however, we restrict the discussion to the channel model shown in Fig. 10. We propose to invert tt
effects of the attack before common SCS watermark decoding as much as possible with help of the éstimatel’,gey .

Thus, the problem is reduced to obtain the estimé&tés andr, . from the host signal samples with an embedded SCS pilot
watermark.

d | Encoder
U

- T

!
|
!
|
r | r | Decoder| d
!
!

Figure 10. Watermark communication facing an attack by amplitude scaling and AWGN with mgan and additional
nonlinear amplitude modification by gamma correction.

5.2. Estimation of Gamma, Gain, and DC Offset for SCS Watermark Reception

Due to space constraints, only a brief outline of our estimation algorithr,for and7,set iS given. The basic approach is
a combination of the estimation gfandr.gse; USINg the algorithm described in Sec. 3, SCS watermark detection from data
elements with the embedded SCS pilot watermark, and a search over all gamma corrections W5, 0.6, . .. ,2}.

SCS watermark detection is described in more detail in our previous publicatidniote that watermark detection refers
to the decision whether the received dats not watermarked with keyX' (Hyp) or is watermarked with key (H;). We
formulate watermark detection as an hypothesis test with the hypothksead H;. Let P,, with P, € [0, 1], denote the
reliability that the received data elememtsre watermarked using the key sequekagerived from the key. P, > 0.5
indicates an embedded SCS watermafk)(
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We propose to estimatg g, andrgse;, USing the following procedure:

1. Inverse gamma correction usingale {0.5,0.6,. .. ,2} is applied to the received data elemerys,..

2. Foreachy, the estimation algorithm described in Sec. 3 delivers the maximum histogram frequency conmpgngtt).
Note that all histograms are computed usiig, = 256 bins covering the entire 8-bit range [0,255].

3. For eachy, the SCS watermark detection reliabili:(y) is computed.

4. The estimaté is equal toy with maximum|A[lo]|(v) andP,.(vy) > 0.5. The maximumA[ly]|(+) for all v is considered
if P.() < 0.5 for eachyy.

5. § andr,mset are computed fromi[lo](%).

Fig. 9 shows some experimental results when using the outlined estimatipf, @ndr g5 and the attack involves gamma
correction withy = 1.2. The upper plot depicts the false positive and false negative decision error rate for SCS watermark
detection using the estimatés g, and7,aset. NOte that the result is biased in the direction of more false positive errors due
to the search over several values for We are basically looking for somgthat allows SCS watermark detection and thus
produce more false positive errors. In practice, compensation of this bias within the hypothesis test should be applied or SC
watermark detection should be applied for received data elements that are not used within the estifiatdnaliserve that
no decision errors are measured /6iNR > —5dB within 1000 experiments. The lower plot of Fig. 9 shows the bit-error rate
(BER) for uncoded binary SCS watermarks. The BER for reception with perfect knowledge of the channel pargmeters
andr,gset and the BER for reception using the corresponding estimates are compared. We observe that the BER increases ol
very slightly for SCS watermark reception using the estimated channel parameters.

6. CONCLUSIONS

A method for estimating (non-)linear amplitude modifications of watermarked data based on securely embedded SCS (sca
Costa scheme) pilot watermarks is proposed. The basic algorithm exploits the periodic structure in the histograms of receiwv:
SCS watermarked data that becomes visible by exploiting the watermark key sequence. The performance of the propos
algorithm is described in detail for linear amplitude modifications. Experimental results show that accurate estimation of th
channel parameters requires 500 to 2000 pilot elements depending on the attack noise. Itis also demonstrated that the estima
based on SCS pilot watermarks is superior to an alternative approach using spread spectrum watermarks. Finally, the extens
of the estimation algorithm to parameterized nonlinear amplitude modifications is outlined.
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