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ABSTRACT

Steganography is the art of communicating a message by embedding it into multimedia data. It is desired to maximize tf
amount of hidden information (embedding rate) while preserving security against detection by unauthorized parties. An ay
propriate information-theoretic model for steganography has been proposed by Cachin. A steganographic system is perfec
secure when the statistics of the cover data and the stego data are identical, which means that the relative entropy between
cover data and the stego data is zero. For image data, another constraint is that the stego data must look like a “typical imagd
A tractable objective measure for this property is the (weighted) mean squared error between the cover image and the ste
image (embedding distortion). Two different schemes are investigated. The first one is derived from a blind watermarkin
scheme. The second scheme is designed specifially for steganography such that perfect security is achieved, which me
that the relative entropy between cover data and stego data tends to zero. In this case, a noiseless communication chann
assumed. Both schemes store the stego image in the popular JPEG format. The performance of the schemes is compared
respect to security, embedding distortion and embedding rate.
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1. INTRODUCTION

Steganography is the art of communicating a message by embedding it into multimedia data (cover data), where the ve
existence of the embedded message should not be detectable by unauthorized parties. We consider steganography as s¢
information hiding in the presence of a “passive” adversary (warden) Fig. 1. A good illustration of this scenario is given by
Simmons’ “Prisoners’ Problem™? Alice sends a messageover a channel controlled by Eve to the recipient Bob. Eve
allows only restricted communication between Alice and Bob, that means some certain type of information should not b
communicated. Therefore, Alice hides the messagéthin some cover data that Eve usually allows to be transmitted.
After information embedding, the cover datais denoted as steganographic dataNote that the term “passive warden”
means that the steganographic dats.not modified by Eve. Nevertheless, Eve can be active in the sense that communication
between Alice and Bob is interrupted completely. In a typical scenario, Eve may belong to a company which tries to keep sorr
information secret and Alice, being in this company, tries to transmit this secret to Bob, who is outside. Alice tries to maximize
the hidden information (embedding rate) while preserving security against detection of the hidden information by Eve. Alice
and Bob share a secret kéy which is used for embedding the messagand for reception of the message Ideally, we
expecti = u, however, as discussed below, some embedding schemes may not allow for entirely error-free reception, leadir
to & # w in general. In this paper, data sequences are represented by vectors,ferghe cover data, with:,, being its

nth element. Random variables are writterSians Serif font, e.g.,x for a scalar random variable amdor a vector random
variable.

The requirements of steganography and appropriate quality criteria are reviewed in Sec. 2. Then, two information hidin
systems are investigated concerning their properties in case of a passive adversary. In both cases, only Alice knows the co
image. It has been sho# that Alice can exploit her side-information about the cover image to achieve high embedding rates
for small embedding distortions. We investigate in Sec. 3 the usage of the watermarking technology S3pe&zdl{transform
scalar Costa schenigfollowed by JPEG compression, where JPEG compression is considered as an unavoidable “attack” or
the steganographic data. The second system is explicitly designed to hide information in a JPEG compressed image format
that error-free communication becomes possible. The necessary data modifications for the information hiding are such that t
probability mass_finctions (PMFs) of the quantized DCT coefficients are (almost) identical to those of the JPEG compressec
image data without hidden information. In Sec. 5, the application of both systems to image steganography is analyzed wi
respect to the embedding distortion, embedding rate, and relative entropy between the cover image and the steganogray
image.
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Figure 1. Dataflow for information hiding with a “passive” adversary (steganography).

2. DESIGN RULES FOR IMAGE STEGANOGRAPHY

The purpose of steganography is mainly to enable communication over the channel shown in Fig. 1. We have to find approprie
models of steganography in order to evaluate how close a specific steganographic scheme comes to this goal. However, one
to be careful with the interpretation of results obtained for such a model since steganalysis might exploit model inaccuracie
Thus, we summarize in this section the most important design rules for image steganography and emphasize the limitations
technical security measures.

2.1. General Considerations

Eve controls the communication between Alice and Bob and is willing to interrupt certain types of communication. Ideally, Eve
would inspect each message and decide whether communication is allowed or not. Thus, encrypted data is not allowed sir
Eve cannot decipher the content. It is assumed that all “plain” data is examined by Eve, although this might become difficult i
the “innocent” traffic between Alice and Bob is large. Thus, Alice is left with the attempt to hide “unallowed” messages within
commonly accepted data that is also called cover data. One attractive type of cover data is natural image data, since

e images contain a significant amount of data, hopefully enabling high secret communication rates,
e natural image data can be modified slightly without leading to visible artifacts,

e images are in many scenarios “innocent” data types to Eve, e.g., Alice might be allowed to send some pictures fror
products of her company to Bob.

Due to these properties, image steganography has been investigated quite often within the last years. However, one should
consider the fact that a really paranoid Eve can flip the last argument and no longer allows the communication of image da
between Alice and Bob if Eve learns that image steganography works. However, since this paper should be longer than t\
pages, we simply ignore this argumentation and consider natural image data as “innocent” even if image steganography wor
Thus, Alice is left with embedding her message such that the steganographiaich@ggnot look suspicious to Eve.

Eve can analyse the steganographic imaggth respect to
¢ the size measured in bits per pixel,
¢ the subjective quality, and

e statistical properties.

The first item leads to the conclusion that uncompressed image data looks to Eve as suspicious as encrypted data. Thus,
steganographic imagehas to be always in a compressed format. In this paper, we consider the popular JPEG format whict
involves lossy compression without degrading the image beyond acceptable quality. The subjective guaityiffitult to

analyze. Even more difficult is the question whether a certain image quality is natural or not. To get a hand at this problen



we measure the embedding distortibg,,,;, by the mean sjuared eror (MSE) between the image elements (pixels, transform
coefficients) ok andr. In practice, Eve cannot evaluatg;,;,, however, smalDg,;, ensures that the introduced modifications

are visually imperceivable. Itis not really required that no perceivable differences betveeeir exist. However, smalDg,,,;,
ensures that is close to common cover data and thus provides a tracktable quality measurement. The most difficult problem i
to measure security against statistical steganalysis which is discussed in the following subsection.

2.2. Statistical Steganalysis

Different methods for statistical steganalysis have been proposed by several reasearchers and are often exploited to de:
improved steganographic schenfe® Common to all these approaches is the design of statistical tests that are used to
distinguish original cover image data from steganographic image data which is basically a hypothesis testing problefn. Cachi
proposed an appropriate information-theoretic model that allows to quantify the security of steganography in terms of th
decision error probabilities of hypothesis testing. As already mentioned by Caching, such a formal security notion has to b
interpreted with care since the adversary might exploit information that is not included into a certain model for steganograph
The fundamental problem is that, in the long run, the information hider and the adversary can improve on their models. To obta
a fair analysis, we assume that both parties exploit the same statistical features of the cover data. Based on this assumptio
is reasonable to adopt Cachin’s security measure for steganography which is basically the relativE*éRinbpsick Leibler
distance) between the cover data and the steganographic data.

The relative entropy measures the “distance” between tabgblity mass finctions (PMFsp, [z] andp, [z] of two discrete
random variables andr, both with support set’. The formal definition is

Px
D (o] llpr o)) = 3 e loftog 22, &
zeX
with the convention thah log [ ; = 0 andpy [z]log p*[””] = oo (We setp, [z] log & el — () for measureg, [z] due to the
large estimation variance for small valuespefz]). D (px[ ] || pr [2]) is always non negative and is zeroff [z] = p, [z].

Cachin defines that a steganographic system with cover data modeled by the random yarabieith steganographic data
modeled by the random variabtés e-securef D (py [z] || ps [z]) < € If € = 0, the steganographic system is calfegtfectly
secure

Note that the relative entropy provides only a security measure against statistical steganalysis. The embedding distorti
Dgnmp can be quite large, even if a steganographic system is perfectly secure according to Cachin’s definitioMgSince
should be small as well, it is not possible to achieve a secure steganographic system by replacing the cowveitidatay
random data having the same statistics. The relation of the embedding distortion and the security of a steganographic schen
is not included in Cachin’s work, however, it is crucial for image steganography. Thus, we investigate in thi3pygriand
D (p« [z] || pr [z]) to evaluate the security of a specific steganographic system.

3. STEGANOGRAPHY BASED ON (ST-)SCS WATERMARKING

Recently, information embedding has been investigated in particular in the context of digital watermarking. For digital wa-
termarking, information embedding techniques have to be designed such that subsequent processing does not destroy
embedded information. This property makes digital watermarking technology also attractive for steganography when infol
mation embedding is followed by lossy compression. Fig. 2 shows a block diagram of watermark communication where loss
compression is modeled by a quantization attack.

Y
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i@

Quantizer »{ Decoder

Figure 2. Information embedding with side information at the encoder. The communication channel is composed by simple
guantization which models lossy compression of the gata

Chen and WornelP and Cox, Miller and McKellip¥’® realized that the scenario in Fig. 2 can be considerembasmuni-
cation with side information at the encod@rhis perspective allows the design of watermarking schemes with high watermark
rates. In this section, the application of such watermarking schemes to steganography is dicussed.



3.1. Costa’s Scheme Exploiting Side-Information at the Encoder

Attacks by fine quantization can usually be modelled by an additive noise source? €lusteed theoretically that the channel
capacity for the communication scenario depicted in Fig. 2 wittittve white Gaussian nise (AWGN) v instead of the
quantization channel anshdependentdentical_dstributed (IID) Gaussian cover datais independent of the varianeg

of the cover data. The performance of igieal Gsta £heme(ICS) depends solely on the watermark-to-noise power ratio
WNR = 10log,, 0% /02 [dB]. Costa’s result is surprising since it shows that the original stateeed not be considered
as interference at the decoder although the decoder does notkn@msta presents a theoretic scheme which involves an
L-dimensional random codebot# = which is

Z/{Lm = {ul:wl—+—axl | 16{172,"',[/7/}7
W~ N(OanILz)aX ~ N(anzle)}v 2

wherew andx are realizations of twd.,-dimensional independent random processaadw with Gaussian PDH,;, is the
total number of codebook entries afg], denotes thd.,-dimensional identity matrix. There exists at least one such codebook
such that for., — oo the capacity derived by Costa is achieved.

In ICS, the data has a Gaussianrgbability density function PDF with variance? + o2, sincex andw are statistically
independent random variables with Gaussian PDF (Recall that the sum of two statistically independent Gaussian random ve
ables produces again a Gaussian random variable). Amplitude scalinl o%/(c} + o2,) delivers datas’ with a PDF
ps (s') = px (s"). Thus, the relative entropy betwerrmnds’ is zero which indicates a perfectly secure steganographic system.

A more formal proof of this result has been given by J. K.!SuNote that even additional Gaussian noiseannot disturb
this property when the amplitude scaling is adapted appropriately. However, the made assumptions about the cover data are
very realistic so that the obtained result is of little interest for practical steganography.

3.2. (ST-)SCS Watermarking

The ideal Costa scheme (ICS) is not practical due to the involved huge random codebook. Therefore, several suboptin
implementations of ICS have been proposed since £999:5:1920 A natural simplification of ICS is the usage of a structured
codebook/%=, which in the most simple case can be constructed by a concatenation of scalar uniform quantizers leading t
a sample-wise embedding and extraction rule. This approach has been independently proposed by several résehtéhers.
We denote this approach asatar ®sta gheme (SCS).

In SCS, the messageis encoded into a sequence of lettdrsvhered,, € D = {0, 1} in case of binary SCS. Each of the
letters is embedded into the corresponding cover data elemgni$ie embedding rule for theth element is given by

d

Sn = zTp+a(Qa{z,—a,}—(z,—a,)), wherea,=A (% + kn> , 3)

andQa {-} denotes scalar uniform gquantization with step sizeThe keyk is a pseudo-random sequence with € (0, 1]

which has to be derived from the secret K€y This embedding scheme depends on two parameters: the quantizer st&p size
and the scale facter. Both parameters can be jointly optimized to achieve a good trade-off between embedding distortion anc
detection reliability for a given noise variance of an AWGN attack.

Decoding of the messagefrom the received datais based on the extracted received datal he extraction rule for the
nth element is

Un = QA {rn — knA} — (rn — knA), 4)

where|y,| < A/2. y,, should be close to zerodf, = 0 was sent, and close toA /2 for d,, = 1.

Although most of the work on SCS considers AWGN attacks, it has been shown as well that SCS is also robust again
quantization attack%. High watermark rates with low bit-error rates can be achieved by sophisticated error-correction coding
of the embedded message Low watermark rates are unavoidable if the security of steganography requires low watermark
powera?. In such a case, it might be useful to combine SCS wgtiead-tansform (ST) watermarking, as proposed by Chen
and Wornell'> In ST-SCS, the SCS watermark is embedded only into the projection of the covex dai® a random
spreading vector. A more detailed description and analysis of ST-SCS is given in our previodgWork.



It can be showf that the SCS watermark signal has a uniform distribution of width A and is statistically independent
from the cover data. Thus, the PDF of the watermarked sigaas given by

s (5) = px (5) * pw (5) (5)

where %” denotes linear convolution. In general, a non-zero relative entropy betweaad s has to be accepted, meaning
perfect security against statistical steganalysis cannot be achieved. However, we §ing p, (s) for small watermark power
o2 and a smooth cover data PE (z). The accuracy of this approximation is investigated for example image data in Sec. 5.

4. STEGANOGRAPHY WITH HISTOGRAM PRESERVING INFORMATION EMBEDDING

A new method for information embedding is proposed that preserves (in a statistical sense) the histogram of the cover da
The explanation of this new method is restricted to IID cover datahere each sample, can be considered a realization of

a scalar random variable First, a data mapping method that allows a precise modification of the data histogram is described.
Next, information embedding based on switched data mappings is introduced.

4.1. Data Mapping Achieving a Predefined Histogram

Histogram modification is an old problem, however, traditionally, elements of the input data having the same value are a
mapped to the same value in the output data. Hence, the desired histogram can only be approximated, where the accuracy o
approximation depends strongly on the specific nature of the histogram of the input data. A predefined output histogram can |
achieved perfectly if the data mapping allows that certain portions of data elements with identical value are mapped to differel
values in the output data. Such a mapping can be described by a matitk entriesy;;, wherey;; denotes the number of

data elements being in thith input histogram bin that have to be mapped to output values belonging fetiiput histogram

bin. Meg and Vaidyanath&h propose a histogram modification method where the mean squared error (MSE) is minimized
between the input and the output data. This is achieved by solving an integer linear programming problem to obtain the prop
mapping matrixC'. However, it appears that for many typical data types and a MSE distortion measure, a direct solution to
the data mapping problem with predefined output histogram exists. Below, such a direct approach is described and a simj
(approximative) implementation is outlined.

Let x denote a discrete random variable with the finite alphabet
X ={zM 2® 2@ 21 whereN, = |X| < co andzV) < 23 < 2®) < < 2V, (6)

The PMFpy [z] of x can be estimated from an observationf length L,, by normalizing its histogram, [z] by the length
L, of the observed data sequenceConsidering the histogragy [z] is prefered to the PMp, [z] when an exact histogram
modification is desired since all histogram values are integer numbers.

The datax shall be modified into datg with a predefined histograg [y]. We assumeg,, € X’ without loss of generality.
It appears that the derivation of the mapping> y does not depend on the exact values®f, (), (3 ... z(N=) butonly
on the histogram valuds, [i] = px [z(?] andh, [i] = p, [y?] fori € {1,2,..., N, }. We demand that the mapping— y
introduces as little distortion as possible. Here, a mean squared error (MSE) distortion measure

® N N
Dyap = Li Z d (xn:yn) = Li Z Z%’jd (w(i)’w(j)) , with d (wnayn) = (xn - yn)2 , (7)
xr 1 xr

n= i=1 j=1

is assumed. An important consequence of this distortion measure is that the mappipgvith minimum MSE must preserve
the relation between different data elements. That is, for two input data elemeatslz,,, with z,, > z,,,, the corresponding
mapped data elemenjs andy,, have to satisfy,, > y,, foralln,m € {1,2,...,L,}. This property is stated more precisely
in the following theorem, which has been proven by Tzschoppe &t al..

THEOREM4.1. Letx andy denote vectors of length, with elements sorted in increasing order so that< z, < z3 <
.. <z, andy; <y» <ys <...<yL,. The MSE distortio® = (1/L,) Eﬁ;l(xn — yn)? is never larger than the MSE
D, =(1/L,) Eﬁ;l(azn — Yx(n))?, Wherer(n) denotes an arbitrary permutation of the element indices.

Now, consider the first histogram bir= 1 of the output data which must contdin [1] data elements. Due to Theorem 4.1,

all data elementg,, belonging into this histogram bin have to be derived fromithél] smallest input data elements in order
to achieve a mapping with minimum MSE distortion. Next, all output data elemgntgelonging to the second histogram bin



have to be derived from the remainihg[2] smallest input data elements. Proceeding this argumentation shows that all bins of
the output histogram have to be filled in increasing order by mapping the input data with values in increasing order. Note the
the exact value,, of the input data is irrelevant; only the relation between the values of the input data matters. Theygntries

of the mapping matrixX" can be determined for increasifidy inspecting to which input histogram birthose data elements

x,, belong that have to be mapped to the valtié and thus fall into thgth output histogram bin. Knowing the mapping matrix

T, the data mapping — y is realized by randomly selecting; input data elements with valug? and mapping them to the
corresponding output data elements with vaitie.

The described data mapping requires that the entire inputdatknown before the mapping can be designed and applied.
However, in many practical cases, the input process only described by its PMB, [x] and elements should be mapped
directly so that the output procegsaichieves a certain target PM¥; [y]. Such a mapping becomes possible when considering
vij [ hx [£] @s the probability with that a valug, = =) is mapped to the output valye = z9). Hence, the mapping, — y,
is no longer deterministic, but depends on the probabilitjegh, [i]. For large data sequencesthe normalized histogram of
the output data tends to the desired PM#;, [y].

We propose an efficient implementation of the random mapping> vy, which does not require the computation of the
mapping matrixd’. However, it sufficies to randomize the input dataand to quantize this randomized input data to the output
datay,,. The mapping can be characterized completely by the required scalar quéhtizérich itself is characterized by the
setT = {t1,ts,...,tn,—1} Of decision thresholds. We describe a mapping algorithm that operates on the randomized index
i of the possible input symbols® so that the case of unequally spaced symbols is covered more easily. Fig. 3 illustrates the
derivation of the sef for an example withV,, = 10. The upper diagrams show the given input histogtarfi] and the desired
output histogrant,, [5].

Let i, denote the symbol index ifil, 2, ... , N, } of a given input data element,. This index is randomly mapped on a
continuous valued random variakievith

b =ip — Qp,y (8)

wherea,, is drawn from a continuous valued random variableith uniform support over the rangé, 1). The PDF of the
random variable is proportional to the function

N. o
hy (t) = Z hy [i] rect <t + % - z) ,  With rect (z) = { (1) ! ells/e2 <z<l/2 9)
i=1 ’ '

By (t) is shown for the given example by a dotted line in the upper right diagram in Fig. 3. We introduce
N, N,
ha () =D h[i] 6 (¢ —i) and hy (1) = hy[jl6(t— ), (10)
i=1 j=1

with é (z) being a Dirac impulse, in order to obtain well defined integrals of the histogkafisandh, []. The lower diagrams
in Fig. 3 show the integralﬁf hy () dr, fot hy (1) dr andfot hy () dr, for the given example histograms.
The quantize; is defined as the function

M t<t
Qit)y=¢ 2V 5 tj<t<t; Vie{2,3,...,N, -1} (11)
z(N=) ;o In,—1 <t
so that the operation
Yn = Qt(tn) - Qt(ln - an) (12)

produces the desired output dgtaif the set7 of decision thresholds fullfills the integral equations

1 t1 J ti
/ hy (1) dr = / hy (r)dr and / hy (t)dr = / hy (r)dr forj e {2,3,... ,N, —1}. (13)
0 0 j-1 ti—1

The meaning of these integral equations is illustrated in Fig. 3 by the dashed lines in the lower diagrams. Note that the highe
threshold g is redundant.

We summarize that input datawith a given histogram, [i] can be mapped to output datavhich achieves (in a statistical
sense; for long data sequences) a predefined histolyydyh with minimum MSE distortion using the operations defined in
(11) and (12), where the quantizer decision thresholds have to be computed from (13).



I ITERERERE e
tﬂth t5' t7Y tg V
ty ty g tg t10

Figure 3. Derivation of threshold$t,, t», ... ,tn, } for the data mapping — y. The input histogranh, [i] is mapped onto
the predefined output histograim [7].

4.2. Secure Information Embedding Based on Switched Data Mapping

The previously described data mapping can be used for information embedding if different mappings, are defined and

the data to be embedded is used to switch between the possible mapping rules. Although this principle is quite general, \
focus here on the case of IID input datavhere each data element is characterized by the discrete valued random variable
with the support set’. In order to render successful steganalysis impossible, it is required that the PMFs of the coxer data
and the steganographic datare (almost) identical, that js [r] = px [r]. Due to the IID assumption, this statement can be
reduced to the equality, [r] = px [r].

We assume that the receiver of the steganographicidais no access to the original cover dataThus, it must be
possible to decode the messagsimply by inspection of. Further, if error-free communication is desired, the set of all
possible steganographic datéhat deliver a certain messafile= uy must be disjoint from the set of possible steganographic
data deliveringi # wug. Thus, for information embedding, the cover dataas to be mapped onto members from disjoints
sets for the different possible secret messageSuch an information embedding principle is already known in the digital
watermarking communicty asu@ntization hdex_nodulation (QIM), as proposed by Chen and WorAéll.QIM allows for
error-free transmission in the case of noise-less channels. For watermarking applications, QIM turned out to be not appropriz
since QIM is not very robust against channel noise. However, there is no channel noise in steganography if the used quanti:
constellation fits to the quantizers for lossy compression of the cover data. A general QIM scheme does not necessarily prese
the PMF of the cover data, however, this can be achieved when the generalized data mapping introduced in the previo
subsection is used to map the cover data onto the different sets of quantizer representatives.

The required message dependent data mapping operates sample-wise in the simple case of 1ID covéfodatable
binary embedding, two disjoint sef andX; have to be defined, where

XuX, =X and AN, = 0. (14)

These sets andX) can be interpreted as the representatives of two different quantizers, which emphasises the relationship ¢
the new information embedding technigue to QIM. The messdgencoded into a streanwith binary elements,, € {0,1}.



Next, b is embedded int& by the mapping ofz,, — r,, using the mappings Mag’, X,) and Mag.X’, ;) for b,, = 0 and
b, = 1, respectively.

Map(, Ap) | | Map(X, 1)

\

0123456789 r(b=0) (-0 r(h=1) 0123456789 r(b=1)

Figure 4. lllustration of switched data mapping for an entropy coded message

Fig. 4 depicts the influence of information embedding by switched data mapping on the conditional PMFs of the steganc
graphic data: for an example wittt’ = {0,1,2,...,9}, &y, = {0,2,4,6,8} andX; = {1,3,5,7,9}. The data mapping rules
Map(X', Xp) and MagX’, A;) have to be designed such that the conditional PMFPH) = 0] andp, [r|?) = 1] are scaled

proportianal to the cover PDp; [z] for all members of the set;, and X, respectively, and zero elsewhere. The black part of
the bars in the leftmost and rightmost graph in Fig. 4 indicates the amount of data that has been mapped from values of the -
X1 and X5, respectively. Formally, the conditional PMFs are given by

. px[r] . X
— = Prob(xex;) 1 € i ;
Iy [r|b Z] { o e fori € {0,1}. (15)

The unconditional PMBp, [r] of the steganographic datas given by

Dr [7] Prob (13 = O) Dy [r|l~) = O] + Prob (Z) = 1) - pr [r|l~) = 1}

Prob(b=0
_ ﬁpx [r] sreX
- Prob(b=1
ﬁxex&px [r] srei
= px[r] iff Prob ([3 = z) =Prob(x € &;) Vie {0,1}. (16)

We observe that the PMF of the cover data is not modified by the proposed information embedding scheme if the probabilit
Prob (B = 1) of “1"-bits in the encoded messadweis equal to the probabilitProb (x € X;) that the elements of the cover

datax belong to the se;. Note that the conditiofProb (E = 0) = Prob (x € Xp) is fulfilled as soon a®rob (B = 1) =

Prob (x € A;) is valid sinceProb (E = 0) =1—Prob (E = 1). We denoteP! = Prob (x € X;) as the channel state for

the given cover data P! is a property of the cover data that can not be modified by the information embedder. Since security
against steganalysis can be achieved onlyfah ( b = 1) = P!, the amount of information that can be embedded per cover
data element (steganographic capacity) is given by the binary entropy function

H(P') = P'log,(P') + (1 — P')log,(1 — P') [bits/cover elemeit (17)



The steganographic capacity is 1 bit/(cover elementffor= 0.5 and decreases fdt! # 0.5. The capacity is zero faP! = 0
andP! = 1.

So far, the histogram preserving embedding method has been described in terms of an encoded binarﬁmmpagars

that security can be achieved only fdrob (B =1) = P'. However, usually it is assumed that a binary encoded message

contains as many zeros as ones. This is particularly true if binary encodingsafombined with encryption to ensure that
only authorized parties are able to decode the embedded information. However, in general, the cover data nitghttage
which requires an unequal distribution of zeros and ones within the encoded mbssiigerder to solve this problem, the
message encoding is separated into two steps. kiissttansformed into a binary sequence and encrypted into a binary message
b using the secure kel(. Any secure encryption algorithm can be used. Secbrid,processed by an entropy decoder (e.g.
Huffman decoder), where the entropy code (e.g. Huffman code) has been designed for a binary source with pPdtfablity

the source symbol “1”. The output of the entropy decoder is the binary seqbemitle Prob (E = 1) = P! as desired. Such
an encoding process is depicted in Fig. 5.

K Prob (z € A1) x
(] binary b entropy b switched
tion (de)codin mappin
encryp™ Prob(b=1) = 0.5 9 |Prob (h=1) =Prob( € 1) pping

¢

r

Figure 5. Encryption and entropy coding of the messader histogram preserving steganography.

The presented information embedding method is designed such, that the relative entropy between the coaaddhta
steganographic datatends to zero. Note that this limit can be achieved only for long data sequences. A perfect match of
the histograms of the cover data and the steganographic data can never be achieved since the randomness of the informe
to be embedded does not allow a deterministic mapging r as proposed by Mesand Vaidyanathat?. However, the
random mapping described in the second part of the previous subsection provides a simple and elegant method to prodi
steganographic daitahaving the same statistics as the cover data

As already described in Sec. 2, secure image steganography requires also that the distortion introduced by the informati
embedding algorithm is not too large. The MSE embedding distortion is determined by the mapping distortion of both mappint
rules Mag X', Xp) and Mag X', X;) which can be computed from (7). Unfortunately, the mapping distortion is mainly deter-
mined by the setd&} and.X; and the cover data histogram. In this paper, we do not consider the adaption of thig aetst)
to the distortion constraint since the decoder of the steganographic data mustkamd Y, , too. Thus, the distortion can be
controlled only by applying the described information embedding to a fraction of all cover data elements.

5. IMAGE STEGANOGRAPHY

We designed two systems for image steganography with JPEG compressed steganographic ifegfst system is based
on ST-SCS watermarking and the second system is basebstmytam-peserving_dta_nappings (HPDM). Due to space
constraints it is impossible to describe both systems in detail. Thus, only a rough outline of the design concepts is given.

5.1. Outline of the Implemented Systems for Image Steganography

We exploit only a very simple stochastic model of the cover data based on a two-dimensional Discrete Cosine Transform (DC
of non-overlappin@® x 8 blocks of the image pixels. Fig. 6 illustrates & 8 block DCT, which is denoted &3DCT subse-
quently. Theith 8 x 8 block in row-scan is transformed into 64 DCT coefficieft$ D", 2PPCT, ... 2PPCT . #BPoTY

Next, the coefficients with identical frequency indgkrom all 8 x 8 blocks compose the signﬁ?DCT, which can be consid-

ered a subchannel. Thus, there are 64 subchannels, all having the samé lengthwhich is identical to the number 8fx 8

blocks in the given image. The common zig-zag sc&his used for labeling the 64 signat§™c™.
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Figure 6. Image steganography using the 8 block DCT (BDCT).

We model each componeraEDCT by an IID random process. This model is not always very accurate, nevertheless this
assumption is made in order to keep the complexity of both systems at an acceptable level. In natural image data, statistit
dependencies between different subchannels and different elements within one subchannel have to be considered by the in
mation embedder and by the adversary. However, the focus of this paper is on highlighting the general properties of ST-SC
and HPDM, which can be done most easily for the described simple stochastic image model. Each subchannel is quantiz
according to JPEG compression with quality factor 75. We assume that the coversinhagenot been compressed before,
which improves the quality of the steganographic imageNevertheless, both systems would work as well for an already
compressed cover image Only the first 21 subchannels in zigzag-scan were used for information embedding, since the very
high frequency subchannels are quantized too strongly so that almost no space for information hiding is left. The total embe
ding distortion is distributed over all 21 used subchannels so that the MSE embedding distortion per subchannels is rough
proportional to the respective distortion of simple quantization due to JPEG compression.

JPEG quantization is considered in the design of the ST-SCS based scheme as a simple additive noise source. The date
all used subchannels is error correction encoded with a rate 1/3 Turbo code and the embedding strength is chosen so that
bit-error-rate after Turbo decoding is bela®@°. The embedding rate can be modified by the spreading factor of the spread-
transform. A spreading factor of 1 provides the highest data rate, but produces also the largest embedding distortion. The S
guantizer step size has a fixed relation to the step size of JPEG quantization. Thus, no side information has to be transmittec
the decoder.

The HPDM based scheme provides error-free communication, since JPEG quantization is already considered within tt
embedding algorithm. The sety and; contain all possible even and all possible odd coefficient per subchannel, respectively.
This simple rule ensures that no side information about the choidg ahdX’; has to be transmitted to the decoder. However,
due to this arrangement, each subchannel can have a different channgf'saaiet the distortiorDy,, can be controlled only
by varying the fractiom of subchannel elements used for information embedditigandp are quantized to 16 possible values
and transmitted to the decoder as side information. This side information is always transmitted in the first subchannel, whe
P! = 0.5 is assumed for the transmission of the side information. Note that encryption of the side information is required tc
resist steganalysis.

5.2. Experimental Results

Experiments have been made for both schemes with several grayscale images, different rates of hidden information and differ
embedding distortions. Here, we discuss only example results for the grayscale test image “Lenna3 1 sizd 2 which

reflect the most important results obtained by all experiments. Standard JPEG compression with quality factor 75 of the cov
imager gives a compressed imagewith PSNR, = 38.08 dBand size of 254576 bits = 31.08 kB. Experiments with 100
different messages have been made with the emedding systems ST-SCS and HPDM, where the subsequently presented re
are averaged over all 100 simulations. The spreading factor of ST-SCS has been set to one, thus, plain SCS has been app
An embedding distortion of 36.4#B compared to the cover imagehas been achieved for error-free communication of the
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hidden message. The parametecf HPDM have been adapted such that the same embedding distortion ofd36ré2ults.
The quality loss of about 1.66B compared to the directly JPEG compressed imagelow enough so that no difference
between the imagesandr can be perceived subjectively.

PNSR| size of steganographic image| size of hidden messageratio (size of message)/(size ©)f
HPDM ‘ 36.42dB ‘ 266118 Bits = 32.49 ka 32096 Bits = 3.92 kB 12.61 %

ST-SCS| 36.42dB 292755 Bits = 35.74 k 28668 Bits = 3.50 kB 11.26 %

Table 1. Experimental results for 100 simulations with the cover image “Lenna” of#i2ex 512.

Table 1 shows the resulting size of the steganographic imagd the size of the hidden messag®r HPDM and ST-SCS.

HPDM enables a slightly larger amount of hidden information, where both systems allow at the given embedding distortion
message length of more than 11 % of the directly JPEG compressed image. Note that the size of the steganograpfdc image
much larger for ST-SCS than for HPDM. This effect occurs since ST-SCS does not preserve the PMF of the DCT coefficient
for higher frequencies very well, which can be concluded from the measured relative entropies shown in Fig. 7. Thus, th
entropy coder included within JPEG compression performs worse than in the case of the directly quantized image data. Tl
size of the steganographic imagén case of HPDM is also sligthly larger than the sizespélthough the relative entropy for
HPDM is very small for all subchannels. This effect shows that the assumption about independent DCT subchannels is n
accurate. Entropy encoding within JPEG compression takes advantage of dependencies between different DCT coefficier
However, HPDM breaks these dependencies which results in the sligthly increased file size.

0.12 ‘ ‘ ‘ ‘ 0.7 ‘ 2
—— HPDM o JPEG
0.1H —©- ST-SCS l 0.6r] x HPDM
' o ST-SCS o
= 0.5
S0.08¢ .
s =04t
© 0.06 =
= «0.3
K <
© 0.04f
0.2 o o
0.02|
O f f
0 5 10 15 20 25

subchannel number coefficient valuer

Figure 7. Relative entropy betweerfP“™ andsPPCT for  Figure 8. Example histograms taken frogf T, rPPCT
i = 1,2,...,21 for both embedding schemes HPDM and with HPDM embedding, and®PCT with ST-SCS embed-
ST-SCS. ding.

Fig. 7 shows that the measured relative entropy betwg8A™ andsPPCT is very small for all subchannels when HPDM
based steganography is used. Thus, HPDM can be considered as a rather secure system. ST-SCS produces significantly I
relative entropies in subchannels having a relatively “peaky” PMF of the quantized DCT coefficients. In these cases, th
convolution of the cover PDF with that of the ST-SCS watermark signal leads to significant modifications of the PMF of the
quantized DCT coefficients with hidden information bits. Fig. 8 illustrates this effect for measured example PMFs taken fromn
the 15h DCT subchannel. Direct JPEG compression and HPDM give almost the same PMF. However, ST-SCS reduces tt
amount of zero coefficients while increasing the number of coefficients with value

6. CONCLUSIONS

Steganography based on blind ST-SCS watermarking and based on histogram preserving data mappings (HPDM) has b
investigated. The new HPDM scheme gives in the limit of long cover data sequences a zero relative entropy between the co\
data and the steganographic data which proves security of the system within a given stochastic data model. ST-SCS and HPIL
based image steganography allows for almost the same rate of hidden information at a fixed embedding distortion. Howev:
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ST-SCS leaves significant traces in the statistics of the DCT coefficients of the steganographic image as soon as the PDF
the DCT coefficients of the cover image is not very smooth. The presented image steganography based on HPDM can
considered secure within the exploited simple stochastic image model. Further, we believe that the extension of a HPDM bas
steganographic system to more complicated stochastic image models is straight forward. Such an improved system should g
security even against very sophisticated steganalysis.
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