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ABSTRACT

Steganography is the art of communicating a message by embedding it into multimedia data. It is desired to maximize the
amount of hidden information (embedding rate) while preserving security against detection by unauthorized parties. An ap-
propriate information-theoretic model for steganography has been proposed by Cachin. A steganographic system is perfectly
secure when the statistics of the cover data and the stego data are identical, which means that the relative entropy between the
cover data and the stego data is zero. For image data, another constraint is that the stego data must look like a “typical image.”
A tractable objective measure for this property is the (weighted) mean squared error between the cover image and the stego
image (embedding distortion). Two different schemes are investigated. The first one is derived from a blind watermarking
scheme. The second scheme is designed specifially for steganography such that perfect security is achieved, which means
that the relative entropy between cover data and stego data tends to zero. In this case, a noiseless communication channel is
assumed. Both schemes store the stego image in the popular JPEG format. The performance of the schemes is compared with
respect to security, embedding distortion and embedding rate.

Keywords: steganography, scalar Costa scheme, histogram mapping

1. INTRODUCTION

Steganography is the art of communicating a message by embedding it into multimedia data (cover data), where the very
existence of the embedded message should not be detectable by unauthorized parties. We consider steganography as secure
information hiding in the presence of a “passive” adversary (warden) Fig. 1. A good illustration of this scenario is given by
Simmons’ “Prisoners’ Problem”.1,2 Alice sends a messageu over a channel controlled by Eve to the recipient Bob. Eve
allows only restricted communication between Alice and Bob, that means some certain type of information should not be
communicated. Therefore, Alice hides the messageu within some cover datax that Eve usually allows to be transmitted.
After information embedding, the cover datax is denoted as steganographic datar. Note that the term “passive warden”
means that the steganographic datar is not modified by Eve. Nevertheless, Eve can be active in the sense that communication
between Alice and Bob is interrupted completely. In a typical scenario, Eve may belong to a company which tries to keep some
information secret and Alice, being in this company, tries to transmit this secret to Bob, who is outside. Alice tries to maximize
the hidden information (embedding rate) while preserving security against detection of the hidden information by Eve. Alice
and Bob share a secret keyK which is used for embedding the messageu and for reception of the messageû. Ideally, we
expectû = u, however, as discussed below, some embedding schemes may not allow for entirely error-free reception, leading
to û 6= u in general. In this paper, data sequences are represented by vectors, e.g.,x for the cover data, withxn being its
nth element. Random variables are written inSans Serif font, e.g.,x for a scalar random variable andx for a vector random
variable.

The requirements of steganography and appropriate quality criteria are reviewed in Sec. 2. Then, two information hiding
systems are investigated concerning their properties in case of a passive adversary. In both cases, only Alice knows the cover
image. It has been shown3{8 that Alice can exploit her side-information about the cover image to achieve high embedding rates
for small embedding distortions. We investigate in Sec. 3 the usage of the watermarking technology ST-SCS (“spread-transform
scalar Costa scheme”) followed by JPEG compression, where JPEG compression is considered as an unavoidable “attack” on
the steganographic data. The second system is explicitly designed to hide information in a JPEG compressed image format so
that error-free communication becomes possible. The necessary data modifications for the information hiding are such that the
probability mass functions (PMFs) of the quantized DCT coefficients are (almost) identical to those of the JPEG compressed
image data without hidden information. In Sec. 5, the application of both systems to image steganography is analyzed with
respect to the embedding distortion, embedding rate, and relative entropy between the cover image and the steganographic
image.

Further author information: Send correspondence to J. Eggers. Email: eggers@LNT.de
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Figure 1. Dataflow for information hiding with a “passive” adversary (steganography).

2. DESIGN RULES FOR IMAGE STEGANOGRAPHY

The purpose of steganography is mainly to enable communication over the channel shown in Fig. 1. We have to find appropriate
models of steganography in order to evaluate how close a specific steganographic scheme comes to this goal. However, one has
to be careful with the interpretation of results obtained for such a model since steganalysis might exploit model inaccuracies.
Thus, we summarize in this section the most important design rules for image steganography and emphasize the limitations of
technical security measures.

2.1. General Considerations

Eve controls the communication between Alice and Bob and is willing to interrupt certain types of communication. Ideally, Eve
would inspect each message and decide whether communication is allowed or not. Thus, encrypted data is not allowed since
Eve cannot decipher the content. It is assumed that all “plain” data is examined by Eve, although this might become difficult if
the “innocent” traffic between Alice and Bob is large. Thus, Alice is left with the attempt to hide “unallowed” messages within
commonly accepted data that is also called cover data. One attractive type of cover data is natural image data, since

� images contain a significant amount of data, hopefully enabling high secret communication rates,

� natural image data can be modified slightly without leading to visible artifacts,

� images are in many scenarios “innocent” data types to Eve, e.g., Alice might be allowed to send some pictures from
products of her company to Bob.

Due to these properties, image steganography has been investigated quite often within the last years. However, one should also
consider the fact that a really paranoid Eve can flip the last argument and no longer allows the communication of image data
between Alice and Bob if Eve learns that image steganography works. However, since this paper should be longer than two
pages, we simply ignore this argumentation and consider natural image data as “innocent” even if image steganography works.
Thus, Alice is left with embedding her message such that the steganographic imager does not look suspicious to Eve.

Eve can analyse the steganographic imager with respect to

� the size measured in bits per pixel,

� the subjective quality, and

� statistical properties.

The first item leads to the conclusion that uncompressed image data looks to Eve as suspicious as encrypted data. Thus, the
steganographic imager has to be always in a compressed format. In this paper, we consider the popular JPEG format which
involves lossy compression without degrading the image beyond acceptable quality. The subjective quality ofr is difficult to
analyze. Even more difficult is the question whether a certain image quality is natural or not. To get a hand at this problem,
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we measure the embedding distortionDEmb by the mean squared error (MSE) between the image elements (pixels, transform
coefficients) ofx andr. In practice, Eve cannot evaluateDEmb, however, smallDEmb ensures that the introduced modifications
are visually imperceivable. It is not really required that no perceivable differences betweenx andr exist. However, smallDEmb

ensures thatr is close to common cover data and thus provides a tracktable quality measurement. The most difficult problem is
to measure security against statistical steganalysis which is discussed in the following subsection.

2.2. Statistical Steganalysis

Different methods for statistical steganalysis have been proposed by several reasearchers and are often exploited to design
improved steganographic schemes.9{13 Common to all these approaches is the design of statistical tests that are used to
distinguish original cover image data from steganographic image data which is basically a hypothesis testing problem. Cachin2

proposed an appropriate information-theoretic model that allows to quantify the security of steganography in terms of the
decision error probabilities of hypothesis testing. As already mentioned by Caching, such a formal security notion has to be
interpreted with care since the adversary might exploit information that is not included into a certain model for steganography.
The fundamental problem is that, in the long run, the information hider and the adversary can improve on their models. To obtain
a fair analysis, we assume that both parties exploit the same statistical features of the cover data. Based on this assumption, it
is reasonable to adopt Cachin’s security measure for steganography which is basically the relative entropy14 (Kullback Leibler
distance) between the cover data and the steganographic data.

The relative entropy measures the “distance” between two probablity mass functions (PMFs)px [x] andpr [x] of two discrete
random variablesx andr , both with support setX . The formal definition is

D (px [x] jj pr [x]) =
X
x2X

px [x] log
px [x]

pr [x]
; (1)

with the convention that0 log 0
pr [x]

= 0 andpx [x] log
px [x]
0 = 1 (We setpx [x] log

px [x]
0 = 0 for measuredpr [x] due to the

large estimation variance for small values ofpr [x]). D (px [x] jj pr [x]) is always non-negative and is zero iffpx [x] = pr [x].
Cachin defines that a steganographic system with cover data modeled by the random variablex and with steganographic data
modeled by the random variabler is �-secureif D (px [x] jj pr [x]) � � If � = 0, the steganographic system is calledperfectly
secure.

Note that the relative entropy provides only a security measure against statistical steganalysis. The embedding distortion
DEmb can be quite large, even if a steganographic system is perfectly secure according to Cachin’s definition. SinceDEmb

should be small as well, it is not possible to achieve a secure steganographic system by replacing the cover datax with any
random datar having the same statistics. The relation of the embedding distortion and the security of a steganographic scheme
is not included in Cachin’s work, however, it is crucial for image steganography. Thus, we investigate in this workDEmb and
D (px [x] jj pr [x]) to evaluate the security of a specific steganographic system.

3. STEGANOGRAPHY BASED ON (ST-)SCS WATERMARKING

Recently, information embedding has been investigated in particular in the context of digital watermarking. For digital wa-
termarking, information embedding techniques have to be designed such that subsequent processing does not destroy the
embedded information. This property makes digital watermarking technology also attractive for steganography when infor-
mation embedding is followed by lossy compression. Fig. 2 shows a block diagram of watermark communication where lossy
compression is modeled by a quantization attack.

Encoder DecoderQuantizer

x

wu û
�

s=x+w r

Figure 2. Information embedding with side information at the encoder. The communication channel is composed by simple
quantization which models lossy compression of the datas.

Chen and Wornell15 and Cox, Miller and McKellips16 realized that the scenario in Fig. 2 can be considered ascommuni-
cation with side information at the encoder. This perspective allows the design of watermarking schemes with high watermark
rates. In this section, the application of such watermarking schemes to steganography is dicussed.
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3.1. Costa’s Scheme Exploiting Side-Information at the Encoder

Attacks by fine quantization can usually be modelled by an additive noise source. Costa3 showed theoretically that the channel
capacity for the communication scenario depicted in Fig. 2 with additive white Gaussian noise (AWGN)v instead of the
quantization channel and independent identical distributed (IID) Gaussian cover datax is independent of the variance�2x
of the cover data. The performance of anideal Costa scheme(ICS) depends solely on the watermark-to-noise power ratio
WNR = 10 log10 �

2
w=�

2
v [dB]. Costa’s result is surprising since it shows that the original datax need not be considered

as interference at the decoder although the decoder does not knowx. Costa presents a theoretic scheme which involves an
Lx-dimensional random codebookULx which is

ULx = ful = wl + �xl j l 2 f1; 2; : : : ; LUg;

w � N (0; �2w ILx
); x � N (0; �2x ILx

)g; (2)

wherew andx are realizations of twoLx-dimensional independent random processesx andw with Gaussian PDF.LU is the
total number of codebook entries andILx

denotes theLx-dimensional identity matrix. There exists at least one such codebook
such that forLx !1 the capacity derived by Costa is achieved.

In ICS, the datas has a Gaussian probability density function PDF with variance�2x + �2w sincex andw are statistically
independent random variables with Gaussian PDF (Recall that the sum of two statistically independent Gaussian random vari-
ables produces again a Gaussian random variable). Amplitude scaling ofs by

p
�2x=(�

2
x + �2w ) delivers datas0 with a PDF

ps0 (s
0) = px (s

0). Thus, the relative entropy betweenx ands0 is zero which indicates a perfectly secure steganographic system.
A more formal proof of this result has been given by J. K. Su.17 Note that even additional Gaussian noisev cannot disturb
this property when the amplitude scaling is adapted appropriately. However, the made assumptions about the cover data are not
very realistic so that the obtained result is of little interest for practical steganography.

3.2. (ST-)SCS Watermarking

The ideal Costa scheme (ICS) is not practical due to the involved huge random codebook. Therefore, several suboptimal
implementations of ICS have been proposed since 1999.4,18,5,6,19,20 A natural simplification of ICS is the usage of a structured
codebookULx , which in the most simple case can be constructed by a concatenation of scalar uniform quantizers leading to
a sample-wise embedding and extraction rule. This approach has been independently proposed by several researchers.18,5,6,20

We denote this approach as scalar Costa scheme (SCS).

In SCS, the messageu is encoded into a sequence of lettersd, wheredn 2 D = f0; 1g in case of binary SCS. Each of the
letters is embedded into the corresponding cover data elementsxn. The embedding rule for thenth element is given by

sn = xn + � (Q� fxn � ang � (xn � an)) ; where an = �

�
dn
2

+ kn

�
; (3)

andQ� f�g denotes scalar uniform quantization with step size�. The keyk is a pseudo-random sequence withkn 2 (0; 1]
which has to be derived from the secret keyK. This embedding scheme depends on two parameters: the quantizer step size�
and the scale factor�. Both parameters can be jointly optimized to achieve a good trade-off between embedding distortion and
detection reliability for a given noise variance of an AWGN attack.

Decoding of the messagêu from the received datar is based on the extracted received datay. The extraction rule for the
nth element is

yn = Q� frn � kn�g � (rn � kn�); (4)

wherejynj � �=2. yn should be close to zero ifdn = 0 was sent, and close to��=2 for dn = 1.

Although most of the work on SCS considers AWGN attacks, it has been shown as well that SCS is also robust against
quantization attacks.21 High watermark rates with low bit-error rates can be achieved by sophisticated error-correction coding
of the embedded messageu. Low watermark rates are unavoidable if the security of steganography requires low watermark
power�2w . In such a case, it might be useful to combine SCS with spread-transform (ST) watermarking, as proposed by Chen
and Wornell.15 In ST-SCS, the SCS watermark is embedded only into the projection of the cover datax onto a random
spreading vector. A more detailed description and analysis of ST-SCS is given in our previous work.8,21
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It can be shown21 that the SCS watermark signalw has a uniform distribution of width�� and is statistically independent
from the cover datax. Thus, the PDF of the watermarked signals is given by

ps (s) = px (s) � pw (s) ; (5)

where “�” denotes linear convolution. In general, a non-zero relative entropy betweenx ands has to be accepted, meaning
perfect security against statistical steganalysis cannot be achieved. However, we findps (s) � px (s) for small watermark power
�2w and a smooth cover data PDFpx (x). The accuracy of this approximation is investigated for example image data in Sec. 5.

4. STEGANOGRAPHY WITH HISTOGRAM PRESERVING INFORMATION EMBEDDING

A new method for information embedding is proposed that preserves (in a statistical sense) the histogram of the cover data.
The explanation of this new method is restricted to IID cover datax, where each samplexn can be considered a realization of
a scalar random variablex . First, a data mapping method that allows a precise modification of the data histogram is described.
Next, information embedding based on switched data mappings is introduced.

4.1. Data Mapping Achieving a Predefined Histogram

Histogram modification is an old problem, however, traditionally, elements of the input data having the same value are all
mapped to the same value in the output data. Hence, the desired histogram can only be approximated, where the accuracy of the
approximation depends strongly on the specific nature of the histogram of the input data. A predefined output histogram can be
achieved perfectly if the data mapping allows that certain portions of data elements with identical value are mapped to different
values in the output data. Such a mapping can be described by a matrix� with entriesij , whereij denotes the number of
data elements being in theith input histogram bin that have to be mapped to output values belonging to thej output histogram
bin. Meşe and Vaidyanathan22 propose a histogram modification method where the mean squared error (MSE) is minimized
between the input and the output data. This is achieved by solving an integer linear programming problem to obtain the proper
mapping matrix�. However, it appears that for many typical data types and a MSE distortion measure, a direct solution to
the data mapping problem with predefined output histogram exists. Below, such a direct approach is described and a simple
(approximative) implementation is outlined.

Let x denote a discrete random variable with the finite alphabet

X = fx(1); x(2); x(3); : : : ; x(Nx)g; whereNx = jX j <1 andx(1) < x(2) < x(3) < : : : < x(Nx): (6)

The PMFpx [x] of x can be estimated from an observationx of lengthLx by normalizing its histogram̂px [x] by the length
Lx of the observed data sequencex. Considering the histogram̂px [x] is prefered to the PMFpx [x] when an exact histogram
modification is desired since all histogram values are integer numbers.

The datax shall be modified into datay with a predefined histogram̂py [y]. We assumeyn 2 X without loss of generality.
It appears that the derivation of the mappingx! y does not depend on the exact values ofx(1); x(2); x(3); : : : ; x(Nx), but only
on the histogram valueshx [i] = p̂x

�
x(i)

�
andhy [i] = p̂y

�
y(i)

�
for i 2 f1; 2; : : : ; Nxg. We demand that the mappingx ! y

introduces as little distortion as possible. Here, a mean squared error (MSE) distortion measure

DMap =
1

Lx

LxX
n=1

d (xn; yn) =
1

Lx

NxX
i=1

NxX
j=1

ijd
�
x(i); x(j)

�
; with d (xn; yn) = (xn � yn)

2
; (7)

is assumed. An important consequence of this distortion measure is that the mappingx! y with minimum MSE must preserve
the relation between different data elements. That is, for two input data elementsxn andxm with xn > xm, the corresponding
mapped data elementsyn andym have to satisfyyn � ym for all n;m 2 f1; 2; : : : ; Lxg. This property is stated more precisely
in the following theorem, which has been proven by Tzschoppe et al..23

THEOREM 4.1. Let x andy denote vectors of lengthLx with elements sorted in increasing order so thatx1 � x2 � x3 �
: : : � xLx

andy1 � y2 � y3 � : : : � yLx
. The MSE distortionD = (1=Lx)

PLx

n=1(xn � yn)
2 is never larger than the MSE

D� = (1=Lx)
PLx

n=1(xn � y�(n))
2, where�(n) denotes an arbitrary permutation of the element indices.

Now, consider the first histogram bini = 1 of the output data which must containhy [1] data elements. Due to Theorem 4.1,
all data elementsyn belonging into this histogram bin have to be derived from thehy [1] smallest input data elements in order
to achieve a mapping with minimum MSE distortion. Next, all output data elementsyn belonging to the second histogram bin
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have to be derived from the remaininghy [2] smallest input data elements. Proceeding this argumentation shows that all bins of
the output histogram have to be filled in increasing order by mapping the input data with values in increasing order. Note that
the exact valuexn of the input data is irrelevant; only the relation between the values of the input data matters. The entriesij
of the mapping matrix� can be determined for increasingj by inspecting to which input histogram bini those data elements
xn belong that have to be mapped to the valuex(j) and thus fall into thejth output histogram bin. Knowing the mapping matrix
�, the data mappingx! y is realized by randomly selectingij input data elements with valuex(i) and mapping them to the
corresponding output data elements with valuex(j).

The described data mapping requires that the entire input datax is known before the mapping can be designed and applied.
However, in many practical cases, the input processx is only described by its PMFpx [x] and elements should be mapped
directly so that the output processy achieves a certain target PMFpy [y]. Such a mapping becomes possible when considering
ij=hx [i] as the probability with that a valuexn = x(i) is mapped to the output valueyn = x(j). Hence, the mappingxn ! yn
is no longer deterministic, but depends on the probabilitiesij=hx [i]. For large data sequencesx, the normalized histogram of
the output datay tends to the desired PMFpy [y].

We propose an efficient implementation of the random mappingxn ! yn which does not require the computation of the
mapping matrix�. However, it sufficies to randomize the input dataxn and to quantize this randomized input data to the output
datayn. The mapping can be characterized completely by the required scalar quantizerQt, which itself is characterized by the
setT = ft1; t2; : : : ; tNx�1g of decision thresholds. We describe a mapping algorithm that operates on the randomized index
i of the possible input symbolsx(i) so that the case of unequally spaced symbols is covered more easily. Fig. 3 illustrates the
derivation of the setT for an example withNx = 10. The upper diagrams show the given input histogramhx [i] and the desired
output histogramhy [j].

Let in denote the symbol index inf1; 2; : : : ; Nxg of a given input data elementxn. This index is randomly mapped on a
continuous valued random variablet with

tn = in � an; (8)

wherean is drawn from a continuous valued random variablea with uniform support over the range[0; 1). The PDF of the
random variablet is proportional to the function

~hx (t) =

NxX
i=1

hx [i] rect

�
t+

1

2
� i

�
; with rect (x) =

�
1 ; �1=2 < x � 1=2
0 ; else.

(9)

~hx (t) is shown for the given example by a dotted line in the upper right diagram in Fig. 3. We introduce

hx (t) =

NxX
i=1

hx [i] Æ (t� i) and hy (t) =

NxX
j=1

hy [j] Æ (t� j) ; (10)

with Æ (x) being a Dirac impulse, in order to obtain well defined integrals of the histogramshx [i] andhy [j]. The lower diagrams
in Fig. 3 show the integrals

R t
0
hy (�) d� ,

R t
0
hx (�) d� and

R t
0
~hx (�) d� , for the given example histograms.

The quantizerQt is defined as the function

Qt(t) =

8<
:

x(1) ; t � t1
x(j) ; tj�1 < t � tj 8j 2 f2; 3; : : : ; Nx � 1g
x(Nx) ; tNx�1 < t

(11)

so that the operation

yn = Qt(tn) = Qt(in � an) (12)

produces the desired output datayn if the setT of decision thresholds fullfills the integral equationsZ 1

0

hy (�) d� =

Z t1

0

~hx (�) d� and
Z j

j�1

hy (�) d� =
Z tj

tj�1

~hx (�) d� for j 2 f2; 3; : : : ; Nx � 1g: (13)

The meaning of these integral equations is illustrated in Fig. 3 by the dashed lines in the lower diagrams. Note that the highest
thresholdt10 is redundant.

We summarize that input datax with a given histogramhx [i] can be mapped to output datay which achieves (in a statistical
sense; for long data sequences) a predefined histogramhy [j] with minimum MSE distortion using the operations defined in
(11) and (12), where the quantizer decision thresholds have to be computed from (13).
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Figure 3. Derivation of thresholdsft1; t2; : : : ; tNx
g for the data mappingx ! y. The input histogramhx [i] is mapped onto

the predefined output histogramhy [j].

4.2. Secure Information Embedding Based on Switched Data Mapping

The previously described data mapping can be used for information embedding if different mappingsxn ! rn are defined and
the data to be embedded is used to switch between the possible mapping rules. Although this principle is quite general, we
focus here on the case of IID input datax where each data element is characterized by the discrete valued random variablex

with the support setX . In order to render successful steganalysis impossible, it is required that the PMFs of the cover datax

and the steganographic datar are (almost) identical, that ispr [r] = px [r]. Due to the IID assumption, this statement can be
reduced to the equalitypr [r] = px [r].

We assume that the receiver of the steganographic datar has no access to the original cover datas. Thus, it must be
possible to decode the messageû simply by inspection ofr. Further, if error-free communication is desired, the set of all
possible steganographic datar that deliver a certain messageû = u0 must be disjoint from the set of possible steganographic
data deliverinĝu 6= u0. Thus, for information embedding, the cover datax has to be mapped onto members from disjoints
sets for the different possible secret messagesu. Such an information embedding principle is already known in the digital
watermarking communicty as quantization index modulation (QIM), as proposed by Chen and Wornell.24 QIM allows for
error-free transmission in the case of noise-less channels. For watermarking applications, QIM turned out to be not appropriate
since QIM is not very robust against channel noise. However, there is no channel noise in steganography if the used quantizer
constellation fits to the quantizers for lossy compression of the cover data. A general QIM scheme does not necessarily preserve
the PMF of the cover data, however, this can be achieved when the generalized data mapping introduced in the previous
subsection is used to map the cover data onto the different sets of quantizer representatives.

The required message dependent data mapping operates sample-wise in the simple case of IID cover datax. To enable
binary embedding, two disjoint setsX0 andX1 have to be defined, where

X0 [ X1 = X and X0 \ X1 = ;: (14)

These setsX0 andX1 can be interpreted as the representatives of two different quantizers, which emphasises the relationship of
the new information embedding technique to QIM. The messageu is encoded into a stream~b with binary elements~bn 2 f0; 1g.
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Next, ~b is embedded intox by the mapping ofxn ! rn using the mappings Map(X ;X0) and Map(X ;X1) for ~bn = 0 and
~bn = 1, respectively.

9876543210

9876543210

9876543210

x

x

~b

Map(X ;X0) Map(X ;X1)

px [x]

pr

h
rj~b = 0

i
pr

h
rj~b = 1

i

r(~b=0) r(~b=0) r(~b=1)r(~b=1)

Figure 4. Illustration of switched data mapping for an entropy coded message~b.

Fig. 4 depicts the influence of information embedding by switched data mapping on the conditional PMFs of the stegano-
graphic datar for an example withX = f0; 1; 2; : : : ; 9g, X0 = f0; 2; 4; 6; 8g andX1 = f1; 3; 5; 7; 9g. The data mapping rules

Map(X ;X0) and Map(X ;X1) have to be designed such that the conditional PMFspr

h
rj~b = 0

i
andpr

h
rj~b = 1

i
are scaled

proportianal to the cover PDFpx [x] for all members of the setX0 andX1, respectively, and zero elsewhere. The black part of
the bars in the leftmost and rightmost graph in Fig. 4 indicates the amount of data that has been mapped from values of the set
X1 andX2, respectively. Formally, the conditional PMFs are given by

pr

h
rj~b = i

i
=

(
px [r]

Prob(x2Xi)
; r 2 Xi

0 ; r =2 Xi

for i 2 f0; 1g: (15)

The unconditional PMFpr [r] of the steganographic datar is given by

pr [r] = Prob
�
~b = 0

�
� pr

h
rj~b = 0

i
+Prob

�
~b = 1

�
� pr

h
rj~b = 1

i

=

8<
:

Prob(~b=0)
Prob(x2X0)

px [r] ; r 2 X0
Prob(~b=1)
Prob(x2X1)

px [r] ; r 2 X1

= px [r] iff Prob
�
~b = i

�
= Prob (x 2 Xi) 8 i 2 f0; 1g: (16)

We observe that the PMF of the cover data is not modified by the proposed information embedding scheme if the probability

Prob
�
~b = 1

�
of “1”-bits in the encoded message~b is equal to the probabilityProb (x 2 X1) that the elements of the cover

datax belong to the setX1. Note that the conditionProb
�
~b = 0

�
= Prob (x 2 X0) is fulfilled as soon asProb

�
~b = 1

�
=

Prob (x 2 X1) is valid sinceProb
�
~b = 0

�
= 1 � Prob

�
~b = 1

�
. We denoteP 1 = Prob (x 2 X1) as the channel state for

the given cover datar. P 1 is a property of the cover data that can not be modified by the information embedder. Since security

against steganalysis can be achieved only forProb
�
~b = 1

�
= P 1, the amount of information that can be embedded per cover

data element (steganographic capacity) is given by the binary entropy function

H(P 1) = P 1 log2(P
1) + (1� P 1) log2(1� P 1) [bits/cover element]: (17)
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The steganographic capacity is 1 bit/(cover element) forP 1 = 0:5 and decreases forP 1 6= 0:5. The capacity is zero forP 1 = 0
andP 1 = 1.

So far, the histogram preserving embedding method has been described in terms of an encoded binary message~b. It appears

that security can be achieved only forProb
�
~b = 1

�
= P 1. However, usually it is assumed that a binary encoded messageu

contains as many zeros as ones. This is particularly true if binary encoding ofu is combined with encryption to ensure that
only authorized parties are able to decode the embedded information. However, in general, the cover data might haveP 1 6= 0:5
which requires an unequal distribution of zeros and ones within the encoded message~b. In order to solve this problem, the
message encoding is separated into two steps. First,u is transformed into a binary sequence and encrypted into a binary message
b using the secure keyK. Any secure encryption algorithm can be used. Second,b is processed by an entropy decoder (e.g.
Huffman decoder), where the entropy code (e.g. Huffman code) has been designed for a binary source with probablityP 1 for

the source symbol “1”. The output of the entropy decoder is the binary sequence~b with Prob
�
~b = 1

�
= P 1 as desired. Such

an encoding process is depicted in Fig. 5.

r

binary

encryption

switched

mapping(de)coding

entropyu

K x

b ~b

Prob (x 2 X1)

Prob (b = 1) = 0:5 Prob
�
~b = 1

�
= Prob (x 2 X1)

Figure 5. Encryption and entropy coding of the messageu for histogram preserving steganography.

The presented information embedding method is designed such, that the relative entropy between the cover datax and the
steganographic datar tends to zero. Note that this limit can be achieved only for long data sequences. A perfect match of
the histograms of the cover data and the steganographic data can never be achieved since the randomness of the information
to be embedded does not allow a deterministic mappingx ! r as proposed by Mes¸e and Vaidyanathan.22 However, the
random mapping described in the second part of the previous subsection provides a simple and elegant method to produce
steganographic datar having the same statistics as the cover datax.

As already described in Sec. 2, secure image steganography requires also that the distortion introduced by the information
embedding algorithm is not too large. The MSE embedding distortion is determined by the mapping distortion of both mapping
rules Map(X ;X0) and Map(X ;X1) which can be computed from (7). Unfortunately, the mapping distortion is mainly deter-
mined by the setsX0 andX1 and the cover data histogram. In this paper, we do not consider the adaption of the setsX0 andX1
to the distortion constraint since the decoder of the steganographic data must knowX0 andX1, too. Thus, the distortion can be
controlled only by applying the described information embedding to a fraction of all cover data elements.

5. IMAGE STEGANOGRAPHY

We designed two systems for image steganography with JPEG compressed steganographic imagesr. The first system is based
on ST-SCS watermarking and the second system is based on histogram-preserving data mappings (HPDM). Due to space
constraints it is impossible to describe both systems in detail. Thus, only a rough outline of the design concepts is given.

5.1. Outline of the Implemented Systems for Image Steganography

We exploit only a very simple stochastic model of the cover data based on a two-dimensional Discrete Cosine Transform (DCT)
of non-overlapping8� 8 blocks of the image pixels. Fig. 6 illustrates the8� 8 block DCT, which is denoted asBDCT subse-
quently. Theith 8� 8 block in row-scan is transformed into 64 DCT coefficientsfxBDCTi;1 ; xBDCTi;2 ; : : : ; xBDCTi;j ; : : : ; xBDCTi;64 g.
Next, the coefficients with identical frequency indexj from all 8� 8 blocks compose the signalxBDCTj , which can be consid-
ered a subchannel. Thus, there are 64 subchannels, all having the same lengthLxBDCT which is identical to the number of8�8
blocks in the given imagex. The common zig-zag scan25 is used for labeling the 64 signalsxBDCTj .
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Figure 6. Image steganography using the8� 8 block DCT (BDCT).

We model each componentxBDCTj by an IID random process. This model is not always very accurate, nevertheless this
assumption is made in order to keep the complexity of both systems at an acceptable level. In natural image data, statistical
dependencies between different subchannels and different elements within one subchannel have to be considered by the infor-
mation embedder and by the adversary. However, the focus of this paper is on highlighting the general properties of ST-SCS
and HPDM, which can be done most easily for the described simple stochastic image model. Each subchannel is quantized
according to JPEG compression with quality factor 75. We assume that the cover imagex has not been compressed before,
which improves the quality of the steganographic imager. Nevertheless, both systems would work as well for an already
compressed cover imagex. Only the first 21 subchannels in zigzag-scan were used for information embedding, since the very
high frequency subchannels are quantized too strongly so that almost no space for information hiding is left. The total embed-
ding distortion is distributed over all 21 used subchannels so that the MSE embedding distortion per subchannels is roughly
proportional to the respective distortion of simple quantization due to JPEG compression.

JPEG quantization is considered in the design of the ST-SCS based scheme as a simple additive noise source. The data for
all used subchannels is error correction encoded with a rate 1/3 Turbo code and the embedding strength is chosen so that the
bit-error-rate after Turbo decoding is below10�5. The embedding rate can be modified by the spreading factor of the spread-
transform. A spreading factor of 1 provides the highest data rate, but produces also the largest embedding distortion. The SCS
quantizer step size has a fixed relation to the step size of JPEG quantization. Thus, no side information has to be transmitted to
the decoder.

The HPDM based scheme provides error-free communication, since JPEG quantization is already considered within the
embedding algorithm. The setsX0 andX1 contain all possible even and all possible odd coefficient per subchannel, respectively.
This simple rule ensures that no side information about the choice ofX0 andX1 has to be transmitted to the decoder. However,
due to this arrangement, each subchannel can have a different channel stateP 1 and the distortionDMap can be controlled only
by varying the fraction� of subchannel elements used for information embedding.P 1 and� are quantized to 16 possible values
and transmitted to the decoder as side information. This side information is always transmitted in the first subchannel, where
P 1 = 0:5 is assumed for the transmission of the side information. Note that encryption of the side information is required to
resist steganalysis.

5.2. Experimental Results

Experiments have been made for both schemes with several grayscale images, different rates of hidden information and different
embedding distortions. Here, we discuss only example results for the grayscale test image “Lenna” of size512� 512 which
reflect the most important results obtained by all experiments. Standard JPEG compression with quality factor 75 of the cover
imager gives a compressed images with PSNR = 38:08 dBand size of 254576 bits = 31.08 kB. Experiments with 100
different messages have been made with the emedding systems ST-SCS and HPDM, where the subsequently presented results
are averaged over all 100 simulations. The spreading factor of ST-SCS has been set to one, thus, plain SCS has been applied.
An embedding distortion of 36.42dB compared to the cover imager has been achieved for error-free communication of the
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hidden message. The parameters� of HPDM have been adapted such that the same embedding distortion of 36.42dB results.
The quality loss of about 1.66dB compared to the directly JPEG compressed images is low enough so that no difference
between the imagess andr can be perceived subjectively.

PNSR size of steganographic imager size of hidden messageratio (size of message)/(size ofs)
HPDM 36.42dB 266118 Bits = 32.49 kB 32096 Bits = 3.92 kB 12.61 %
ST-SCS 36.42dB 292755 Bits = 35.74 kB 28668 Bits = 3.50 kB 11.26 %

Table 1. Experimental results for 100 simulations with the cover image “Lenna” of size512� 512.

Table 1 shows the resulting size of the steganographic imager and the size of the hidden messageb for HPDM and ST-SCS.
HPDM enables a slightly larger amount of hidden information, where both systems allow at the given embedding distortion a
message length of more than 11 % of the directly JPEG compressed image. Note that the size of the steganographic imager is
much larger for ST-SCS than for HPDM. This effect occurs since ST-SCS does not preserve the PMF of the DCT coefficients
for higher frequencies very well, which can be concluded from the measured relative entropies shown in Fig. 7. Thus, the
entropy coder included within JPEG compression performs worse than in the case of the directly quantized image data. The
size of the steganographic imager in case of HPDM is also sligthly larger than the size ofs, although the relative entropy for
HPDM is very small for all subchannels. This effect shows that the assumption about independent DCT subchannels is not
accurate. Entropy encoding within JPEG compression takes advantage of dependencies between different DCT coefficients.
However, HPDM breaks these dependencies which results in the sligthly increased file size.
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Fig. 7 shows that the measured relative entropy betweenrBDCTi andsBDCTi is very small for all subchannels when HPDM
based steganography is used. Thus, HPDM can be considered as a rather secure system. ST-SCS produces significantly larger
relative entropies in subchannels having a relatively “peaky” PMF of the quantized DCT coefficients. In these cases, the
convolution of the cover PDF with that of the ST-SCS watermark signal leads to significant modifications of the PMF of the
quantized DCT coefficients with hidden information bits. Fig. 8 illustrates this effect for measured example PMFs taken from
the 15th DCT subchannel. Direct JPEG compression and HPDM give almost the same PMF. However, ST-SCS reduces the
amount of zero coefficients while increasing the number of coefficients with value�1.

6. CONCLUSIONS

Steganography based on blind ST-SCS watermarking and based on histogram preserving data mappings (HPDM) has been
investigated. The new HPDM scheme gives in the limit of long cover data sequences a zero relative entropy between the cover
data and the steganographic data which proves security of the system within a given stochastic data model. ST-SCS and HPDM
based image steganography allows for almost the same rate of hidden information at a fixed embedding distortion. However,
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ST-SCS leaves significant traces in the statistics of the DCT coefficients of the steganographic image as soon as the PDF of
the DCT coefficients of the cover image is not very smooth. The presented image steganography based on HPDM can be
considered secure within the exploited simple stochastic image model. Further, we believe that the extension of a HPDM based
steganographic system to more complicated stochastic image models is straight forward. Such an improved system should give
security even against very sophisticated steganalysis.
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