Robustness of Public Key Watermarking Schemes

Joachim J. Eggers and Bernd Girod

Telecommunications Laboratory University of Erlangen-Nuremberg http://www.LNT.de

Overview

- Definition of public key watermarking
- Legendre sequence watermarking
 - Public detection based on Fourier invariance
 - Detection performance without attacks
 - Malicious attacks
- Quantization index modulation
 - Dithered scalar uniform quantization
 - 2D lattice quantization

Private Key Watermarking

- Detection
 - \bullet Needs the key K
 - May need the host signal \vec{x} otherwise: blind detection
- Attacks can fully remove watermark when K is known

INT I, University of Erlangen-Nuremberg, www.LNT.de

2

Public Key Watermarking

- Public detection
 - Cannot use the host signal \vec{x}
 - Need only the public key K_{public}
- Attacks should not work <u>even</u> with K_{public}

Legendre Watermarks

- Proposal by van Schyndel (ICMCS 99, Florence)
- Legendre sequence: $a_0 = 0$, $a_n = e^{j\frac{2\pi r}{N-1}ind_g n}$
- Embedding: add Legendre sequence \vec{a}
 - More complex embedding schemes are possible
 - Additive scheme sufficient for analysis of detection performance
- Keep Legendre sequence \vec{a} secret

LNT |, University of Erlangen-Nuremberg, www.LNT.de

Legendre Watermark Detection

• Periodic auto-correlation of Legendre sequences

$$\tilde{\varphi}_{aa}[n] = \sum_{m=0}^{N-1} a[m]a^{\star}[m+n(\text{mod } n)] \xrightarrow{-1 \text{ for all } n} n$$

- Fourier invariance property $G_{DFT}\vec{a} = A_1\vec{a}^{\star}$
- Detection principle

$$c_p = \underbrace{(\vec{x} + \vec{a})^T}_{\vec{s}^T} G_{\mathcal{DFT}} \underbrace{(\vec{x} + \vec{a})}_{\vec{s}} / N \approx A_1$$

• Detection possible without knowing \vec{a}

4

 $\xrightarrow{\vec{x}} \overbrace{\qquad }^{\tilde{s}}$

Detection Robustness

LNT I, University of Erlangen-Nuremberg, www.LNT.de

Detection Results

6

- Remove watermark
 - \bullet Only N-2 Legendre sequences of length N \Rightarrow exhaustive search feasible
- Confuse the watermark detector
 - Sequence $\vec{\tilde{a}}$ with $G_{\mathcal{DFT}}\vec{\tilde{a}} = -A_1\vec{\tilde{a}}^{\star}$

LNT I, University of Erlangen-Nuremberg, www.LNT.de

8

Construction of Attack Sequence

 \blacktriangleright Generate random sequence \vec{v}

 $\vec{u} = \mathcal{R}e \{ G_{\mathcal{DFT}} - A_1 I \}^{-1} \mathcal{I}m \{ G_{\mathcal{DFT}} + A_1 I \} \vec{v}$

- $\Rightarrow \vec{\tilde{a}} = \vec{u} + j\vec{v}$
- Equation is singular for $A_1 \in \{\pm 1, \pm j\}$
 - $\{\pm 1, \pm j\}$ are eigenvalues of G_{DFT}
 - $\Rightarrow \vec{\tilde{a}}$ can be constructed with eigenvectors of G_{DFT}

\Rightarrow Random sequence $\vec{\tilde{a}}$ can be found easily!

Properties of Legendre Watermarking Scheme

- ► Very long sequences necessary even without attack
- Distortion penalty for confusion attack

 $\frac{D_{\rm attack}}{D_{\rm embedding}} \approx 2 \equiv 3 {\rm dB}$

- ► Overall rating:
- \Rightarrow Nice idea, but hardly practical!

LNT I, University of Erlangen-Nuremberg, www.LNT.de

10

Quantization Index Modulation

► Proposal by Chen & Wornell (1998/99)

Embedding distortion = quantization distortion

$$D_{\text{embedding}} = \mathsf{E}\left\{\frac{1}{N}||\vec{s} - \vec{x}||^2\right\}$$

• Sets Q_0 and Q_1 are public

Quantize \vec{r} to closest point in $\mathcal{Q}_0 \cup \mathcal{Q}_1$

- Determine watermark bit from quantizer set index
- \Rightarrow Watermark is publicly detectable

LNT I, University of Erlangen-Nuremberg, www.LNT.de

12

Dithered Uniform Quantizer

Watermark bits $\vec{b} \rightarrow$ channel coded bit sequence \vec{z}

• Embedding

$$s = \mathcal{Q}\{x+d\} - d$$

$$d \in \{\pm \Delta/4\}$$
$$z = 0 \rightarrow d > 0 \qquad s \in \mathcal{Q}_0$$

$$z = 1 \rightarrow d < 0 \quad s \in Q_1$$

• Fine quantization

$$\Rightarrow D_{\text{embedding}} = \frac{\Delta^2}{12}$$

► Chen & Wornell:

$$\frac{D_{\text{attack}}}{D_{\text{embedding}}} \ge 1 + \gamma_c \frac{3/4}{NR}$$

with

- \bullet signal length N
- ullet rate R of watermark bits per signal sample
- γ_c denotes strength of channel code $\left(\gamma_c = d_H \frac{k_u}{k_c}\right)$

► Worst case?

LNT I, University of Erlangen-Nuremberg, www.LNT.de

14

Robustness of Scalar QIM (2)

- Malicious attack
 - \bullet Quantizer ${\cal Q}$ is public
 - Move signal points $ec{s}$ on boundary between \mathcal{Q}_0 and \mathcal{Q}_1
 - \Rightarrow Public watermark detection is no longer possible

$$\frac{D_{\text{attack}}}{D_{\text{embedding}}} \ge 1 + \frac{3}{4} \equiv 2.43 \text{dB}$$

Distortion penalty too small to prevent attacks

Examples

LNT I, University of Erlangen-Nuremberg, www.LNT.de

16

2-D QIM with Hexagonal Lattice

- Encode watermark
 bits using a ternary
 alphabet
- 2-D dither vectors $\vec{d_{r1}}$ and $\vec{d_{r2}}$
- Attack: move \vec{s} to point A or point B with $d_A < d_B$

► Attack A

$\frac{D_{\text{attack}}}{D_{\text{embedding}}} \ge 1.6 \equiv 2.04 \text{dB}$

- Distortion penalty <u>smaller</u> than for 1D-QIM
- Watermark information not completely destroyed
- ► Attack B

 $\frac{D_{\text{attack}}}{D_{\text{embedding}}} \ge 1.8 \equiv 2.55 \text{dB}$

- Distortion penalty larger than for 1D-QIM
- Watermark information completely destroyed
- \Rightarrow 2D-QIM scheme is slightly more robust

LNT I, University of Erlangen-Nuremberg, www.LNT.de

Conclusion

- Public Legendre watermarking
 - Distortion penalty about 3 dB
 - Very long sequences are necessary
 - Scheme is not practical
- Quantization index modulation
 - Easy to implement even in practical applications
 - 1D-QIM distortion penalty of 2.43 dB
 - 2D-QIM distortion penalty of 2.55 dB

Public scheme with sufficiently large distortion penalty?

18