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ABSTRACT

A watermarking scheme for distinguishing different copies of the same multimedia document (fingerprinting) is investigated
Efficient transmission of natural data requires lossy compression, which might impair the embedded watermark. We investiga
whether the quantization step in compression schemes can be replaced by dithered quantization to combine fingerprinting
compression.

Dithered quantization offers the possibility of producing perceptually equivalent signals that are not exactly equal. The nor
subtractive quantization error can be used as the watermark. We denote the proposed watermarking scheme as "quantiza
watermarking”. Such a scheme is only practical for watermarking applications where the original signal is available to the
detector. We analyze the influence of the dither signal on the perceptual quality of the watermarked document and the waterm:
detection robustness.

Further, the cross-talk between the non-subtractive quantization errors for two different dither realizations is investigatec
An analytical description for fine quantization and experimental results for coarse quantization show how the cross-talk depen
on the characteristics of the dither signal. The derived properties of quantization watermarking are verified for combined JPE
compression and fingerprinting. The detection robustness for the proposed quantization error watermark is compared with tt
of an independent additive watermark.
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1. INTRODUCTION

Digital watermarking refers to the embedding of information into multimedia data without introducing perceptual changes tc
the original data. This technique has been proposed to combat the emerging problem of illegal copying of digital audio, imag
and video data. The watermarks can be used to embed copyright information into the data itself, or to mark different copie
of one document, which allows tracing of an illegal copy back to its owner. The latter application, called fingerprinting, is
considered in this article. We focus on fingerprinting of still image data.

In contrast to many other watermarking applications, the original signal is usually available to the fingerprint detector, whict
simplifies the information transmission. On the other hand, fingerprints can sufferctithimsion attackswhere differently
fingerprinted copies of one document are mixed. Boneh and Shave constructed codes that are secure against such collusion
attacks. However, their scheme assumes that no further attacks against the fingerprints occur. Guth and’Réitzenaied
Boneh and Shaw’s scheme to the case where single fingerprint bits are detectable only with a certain bit error rate. In this par
we do not consider collusion attacks, but we determine the detection error rates for our proposed fingeprinting scheme, whi
is important for designing the collusion-secure codes.

Natural image data usually provide some room for hidden fingerprints. However, the data are often compressed by los
algorithms for efficient transmission and storage. This operation can degrade the robustness of embedded fingerprints sig!
icantly. Therefore, a method for combined fingerprinting and compression is discussed in this article. Further impairment c
embedded fingerprints can occur due to geometrical distortions of the image. This type of attack can decrease the waterm
detection performance severely if no proper resynchronization of the watermark detector is implemented. In this paper, v
assume synchronized access to the watermarked data. This is not too restrictive, since the availability of the original signal
the detector should enable sufficiently accurate resynchronization.

For a general fingerprinting scheme, as described in Fig. 1, the embedding process can be described by

—’k :f+u_jk7 (1)
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where# denotes the original signaij; the signal modification by the embedding process, &nthe published signal (fin-
gerprinted copy)# is also called the “host signal”. For a secure fingerprinting scheme, a key is mandatory. For instance, the
seed of the involved pseudo-random sequence generator generating the watermarks can serve as a key. Some watermal
schemes, including the one proposed in this article, are more complex than the simple addition of a sequence. However,
all cases the watermark can be defined to be the difference between the original signal and watermarked copy, and thus (1
a valid generalization. In the remainder of this article, signals are denoted by vectorg)elgenth signal sample of by

z[n], wheren € A and.\ is the set of sample indices, and random variables by boldfacex(e.@he indext denotes the
fingerprint number.
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Figure 1. Model of fingerprinting

The fingerprint detector receives a sigigl= s, + ¥ = ¥ + Wy + ¢, whered includes any distortion that might be
introduced between fingerprint embedding and detection. We mentioned already that lossy compression is one of the operati
introducing distortion. However, in many applications compression might occur right after fingerprint embedding. Thus,
combined fingerprinting and compression seems to be reasonable. The purpose of this article is to investigate how much ¢
be gained by doing so.

A crucial component in lossy compression is (coarse) quantization of the signal samples. Dithered quantization allows or
to modify the quantization process, usually without significant changes to the document quality. Thus, we propose combinin
fingerprinting and compression by replacing the common quantization step in compression algorithms with dithered quantizet
In particular, we consider uniform scalar quantization as used in JPEG compression of still images. We denote this approa
by the termquantization watermarking. The non-subtractive quantization error is considered the water@ariote that
this approach is not practical when the host signal is not available to the fingerprint detector.

Dithered uniform scalar quantization has already been used in several proposals for digital wateriarkingll these
proposals, dithered quantization is combined with other methods to improve watermark detection when the host signal
not available to the detector. From the information-theoretic point of view, the watermark capacity does not depend on th
availability of the host signal to the watermark deteétér.Using dithered quantization, it is possible to replace the random
codebook in Costa’s probby a systematic one. However, in our case the original is available to the fingerprint detector. Here,
dithered quantization is simply used to combine fingerprinting and compression.

Dithered quantization is briefly reviewed in Section 2, and the actual influence of dithered uniform scalar quantization or
the signal distortion is discussed. In Section 3 the cross-correlation between quantization errors for different dither sequence:
analyzed. Possible detection methods are discussed in Section 4. In Section 5, experimental results for an image fingerprint
scheme are presented, and Section 6 concludes the article.

2. DOCUMENT QUALITY AFTER DITHERED QUANTIZATION

Watermarking of a signal and subsequent quantization can be considered as dithered quantization of the original signal. Dithel
guantization has been investigated in the pa%tor several purposes. In this section, some important results are reviewed and
their relation to watermarking is shown. We consider only uniform scalar quantization and independent identically distributec
(1.1.D.) signals.

2.1. Fundamentals of Dithered Quantization

Dithered quantization is an operation in which a sigdiad:alleddither, is added to an input signal prior to quantization.
There are two kinds of dithered quantizers, the subtractive dithered quantizer as depicted in Fig. 2(left) , and the non-subtract



dithered quantizer, as in Fig. 2(right). Subtractive dithered quantization is only realizable when the receiver of the digital dat
has synchronized access to the dither sequence. The dithered quantization error (DQE) signals for both operations are:
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where s denotes the output of the non-subtractive dithered quantizerg atehotes the output of the subtractive dithered
quantizer.
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Figure 2. (Left) Subtractive dithered quantization; (right) non-subtractive dithered quantization

The distributor of the signaf will send the signa¥, to his clientk in the case of combined fingerprinting and compression.
Thus, the non-subtractive DQi describes the signal distortions due to the embedding process. However, in some cases mor
insights can be gained by looking at the subtractive C&QBue to the relationshif, = €, + di.. For brevity, the fingerprint
indexk is omitted in the remainder of this section.

The previous work on dithered quantization was mainly motivated by the goal of achieving a quantization error that is
independent from the quantizer input. This is important, for instance, in the case of universal quantizatitmavoid
subjectively unpleasant error patterns, e.g., for sinusoidal input sequences. Schicsimared that the subtractive DQE
does not depend on the quantizer input when the dither sa@mm a uniform distribution within the range of one quantization
bin (d € [-A/2,A/2]), leading to an expected squared error g2} = A?/12. Gray and Stockhafrreviewed and extended
this work. They derived dither signals leadingrton-subtractivdDQEs€ in which themth moment does not depend on the
quantizer input. Unfortunately, the independence is usually achieved only by increasing the expected squarédﬁraﬁr E
the non-subtractive DQE.

2.2. Theoretical Analysis of Quantization Noise Power

The theory on dithered quantization was exploited ito analyze the robustness of common additive watermarking schemes
against quantization attacks. This work also enables us to predict the power of the quantization noise for different types «
dither signals, and thus, to investigate the embedding distortion of the proposed quantization watermarking scheme. The ditt
signaIJis modeled by an I.1.D. random procedsvith even symmetric PDB4 (d) and zero mean Ed}=0. The host signal

Z is modeled by an I.1.D. random processvith PDF p, (z). The ditherd is independent from the host Therefore, it is
convenient to express the statistics of the quantization error in terms of the characteristic functions of the dither signal and t
host signal. We define the integral

M,((k) (ju) = / z* py () exp (juz) de, (4)

which equals théth derivative of the characteristic function, except for a complex factor. For convenience, the PDFs are
normalized by their standard deviations, leading to

pi(x) = prx(o'xx) (5)
MO () = M (jufoy), ©)

X

wherex indicates the usage of the normalized random variable. In some cases it is useful to relate the standard dgviations

Tx

andogq to the quantizer step sizk. We define the normalized paramefer ¢ andy = .
Using (3), the distortion introduced by a non-subtractive dithered quantizer can be written as

E{’} =E{e’} + E{d’} + 2E{ed}. 7



We showed that E{e”} and E{ed} can be computed by
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In our experimental fingerprinting scheme, described in Section 5, the coefficient8 gf&hlock-DCT are watermarked.
When these coefficients are modeled by a generalized Gaussian random VarigB)eand (9) can be used to predict the
guantization noise power very accurately. For understanding the main influence of the dither signal on the quantization errc
it is sufficient to model the host signal by a Laplacian random variable, which equals a generalized Gaussian with shape fact
v = 1. Therefore, only a Laplacian host signal with zero mean will be considered in the remainder of this section. The
characteristic function of the Laplacian random variabl/is(ju) = and the expected squared quantization error in

the undithered casel€0) is given by

E{eio} _ Efelio} _, (1 o ) | (10)
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2.3. Embedding Distortion Dependent on Dither Statistics

The influence of the dither distribution on the quantization noise power for different quantizer step sEzesy important for

proper design of a quantization watermarking scheme. The power of the non-subtractivecBQ&erve as a measurement for

the fingerprint embedding distortion and, thus, should be below the threshold of perceptibility. We discuss results for uniform
Gaussian and bipolar dither distributions.

In Fig. 3, the normalized expected power of the subtractive DQE as a functigrisofhown for0 < x < 1 and two
different values of.. Analytic and experimental results are depicted. The excellent agreement between simulated and analyti
results confirms the validity of (8). Further, the curves demonstrate the large influence of the dither distribution on the powe
of the subtractive quantization noise for small valueg of ox/A, meaning coarse quantization. For coarse quantization,
the subtractive dither quantization noise is much larger than the noise of undithered quantization. On the other hand, neith
the dither distribution nor its power has a significant influence on the subtractive quantization noise power for sufficiently fine
quantization (large). In Fig. 3(left), the power of the dither is chosen such that 4 /A = 1/1/12. For this value of, the
uniform dither meets Schuchman’s condition, ensuring that the subtractive DQE powesds F;... } = A?/12, independent
of the quantizer input. This effect is clearly visible in Fig. 3(left). We also observe that fgrta# Gaussian dither leads to
lower guantization noise than the uniform or the bipolar dither. Similar results fo10.25 are depicted in Fig. 3(right). For
this value of¢, the bipolar dither has the samples\ /4, which is a very popular dither sequence in watermarking schemes.
Although for all dither signals the quantization noise is monotonically decreasing for an increasing quantizer step size, the noi
power is still very close ta\? /12 even for very large quantizer step sizes.

Fig. 4(left) depicts the normalized noise power of the non-subtractive DQE, which is calculated using (7), (8) and (9).
Since¢ = 0.289, the dither signal has a power af?/12. For fine quantization, the power of the non-subtractive DQE is
approximately the sum of the dither pow&? /12 and the power of the subtractive DQE, shown in Fig. 3(left). In this case, the
subtractive DQE is almost independent of the dither signal. However, for coarse quantization, the ¢ekjirE(7) becomes
important. The non-subtractive DQ&Eis largest for a Gaussian dither signal for all valuescofin contrast to Fig. 3, the
bipolar dither leads to the smallest non-subtractive quantization noise of all three considered dither distributions. This is due
the stronger dependencies between the bipolar dither and its subtractive quantization noise. Another interesting effect visil
in Fig. 4(left) is that the normalized non-subtractive quantization noise tends to zero for very large stemsddipolar or
uniform dither signals, whereas a non-zero normalized noise power remains in the case of a Gaussian dither signal. This eff
is due to the bounded amplitude of the uniform and bipolar dither in contrast to the unbounded amplitude of Gaussian dithe
signals.

Finally, Fig. 4(right) depicts the embedding distortion of a quantization watermarking scheme in terms of the document
to-noise ratio (DNR= 20log,, 0x /o) for different quantizer step sizes and different dither distributions. This plot simply
presents the results of Fig. 4(left) in a different way. The triangles show the DNR that would be predicted by the quantizatio
noise formulaA? /12, which is only valid for fine quantization. For fine quantization the undithered quantizer achieves about



subtractive quantization error; Laplacian host; {=0.289

subtractive quantization error; Laplacian host; {=0.250
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Figure 3. Normalized power of the subtractive D@Hor different dither distributions and different dither standard deviations;
(left) ¢ = oa/A = 1/3/12 = 0.289 ; (right) ¢ = 04/A = 0.25

3 dB higher DNR than the different dithered quantizers. For coarse quantization this gap is even larger, except for very coar
guantization where dither-dependent bounding effects occur.

Practical watermarking schemes will only operate at high DNRs, where many of the previously discussed effects do nc
occur. Fig. 4(right) shows that for high DNR the dither distribution has no significant influence and the embedding distortion
can be calculated by the sum of dither power and undithered quantization noise power. The presented theory can be usec
determine the compression strength at which it is no longer useful to replace fixed quantization by dithered quantization.

non-subtractive quantization error; Laplacian host; {=0.289 DNR (non-subtractive quantization; Laplacian host; {=0.289)
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Figure 4. (Left) Normalized power of the non-subtractive D@br different dither distributions anfl= oq /A = 1/V/12 =
0.289; (right) document-to-noise ratio DNR 201og,, 0x /0. after fingerprint embedding via dithered quantization.

3. CROSS-CORRELATION BETWEEN DIFFERENT QUANTIZATION ERRORS

In the previous section, dithered quantization was described and the corresponding mean squared (non-)subtractive DQE
analyzed. Thus, the embedding distortion of the proposed quantization watermarking scheme was characterized. In this secti
we turn to the problem of distinguishing the differently quantized copies of the same original signal. We focus on the cross
correlation between the different quantization errors. In common additive watermarking schemes, it is easy to choose differe
watermarks independently. This is not the case for the proposed quantization watermarking scheme, since the cross-correla



between different quantization errors may depend on the distribution of the dither signal and the host signal. We discu:
theoretical results for fine dithered quantization, and some simulation results are presented for coarse quantization.

3.1. Fine quantization

In the case of fine quantization, the PDF of the host sigrialalmost constant over the range of one quantization bin. Thus,
the distribution of the host signal, e.g., Gaussian or Laplacian, has no influence on the statistics of the quantization nois
The expectation Exe} tends to zero, and, for dither signals drawn independently from the host sigfwat,} Es almost

zero, too. First of all, two uniform scalar quantizers with equal step Aizbut constant offsetA, will be considered. An
expression for the cross-correlation between their quantization ey@sde, is derived. Then the cross-correlation between

two (non-)subtractive DQEs achieved for two independent dither realizadioasid d» is computed by averaging over all
possible effective quantizer shifts.

3.1.1. Two Quantizers with Constant Offset A

We consider quantization with the prototype uniform scalar quan@zer Q; with step sizeA and the quantize@, with step
size A and offseinA, as shown on the left side of Fig. &.could take any real value, but, due to the symmetry of the uniform
scalar quantizer, it is sufficient to considek [0, 1). The subtractive DQE, = = — Q»[z] of the shifted quantize@, can be
expressed for every sample of the host signaé a function of the subtractive DQE = = — Q, [z] of the prototype quantizer
Q= 0.
e1 +aA for e; € |— «@
e2_{el+aA—A for 616%%—042A,% (11)

It is sufficient to investigate the quantization error for one quantization bin, since fine quantization is considered. The PDF ©
the subtractive DQFe; can be approximated hy, (e;) = recte;/A). For both quantizers, the mean squared error will be
the same, specifically?, = 02, = 02 = A?/12. Thus, the normalized cross-correlation betwegandes is
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Figure 5. Cross-correlation between the quantization errors of two uniform scalar quantizers with constant/offset

The quantization error cross-correlation as a functioa &f shown in Fig. 5. The plot also indicates that (12) is periodic
in « with the periodicity 1. Note that the cross-correlation result is identical if the affaeis not removed after quantization,



meanings. = Q[z — aA] is considered instead ef, = Q[z — aA] + aA. Zero cross-correlation feje2} is achieved for
the quantizer offsets, , A with

1 1
G0, = 5+ |/ 75 ~ 0.7887, 0.2113. (13)

3.1.2. Quantization Error Cross-Correlation after Random Dithering

The cross-correlation between the DQE of two different (non-)subtractive dithered quantizers can be calculated by consideril
the effective offset between the representation levels of the subtractive dithered quantizers. With help ofghéd)DFthe
effective offset, the cross-correlation can be computed by

0.5

/(1 — 6a + 60%)p, (@) da, (14)
0

E{elez} _

2
Oc

where the periodicity and symmetry dinis exploited. Assuming independent dither signﬁland(fz with the PDFspgq, (d;)

andpq, (d2), the PDF of the effective offset difference can be computed by convolving the dither PDFs with each other, that
is, pa (@) = pa, () x pa, (). Now, three example dither signals are investigated to illustrate this result. We assume in all
examples that the PDREs, (d;) andpa, (d=) are identical.

Example 1: Bipolar dither with d € {—A/4,A/4}

The effective offsetis 0 in half of all cases and 0.5 otherwise. Hence, the cross-correlation between the PQEd$ Fo? =
0.5-140.5-(=0.5) = 0.25.

Example 2: Continuous dither with uniform distribution in [-A/4, A/4)

Here,p, (@) is triangular withp, (0) = 2 andp, (Ja| > 0.5) = 0. Therefore, the cross-correlation between the DQE is
E{eres} /02 =2 [0 (1 - 6a +a?)(2 — 4a)da = 0.25.

Example 3: Continuous dither with uniform distribution in [—-A/2,A/2)

The effective offset difference will also have a triangular distribution, but witki0) = 1 andp,, (|a| > 1) = 0. However,
due to the periodicity and symmetry iy this PDF can be translated into a uniform distribution overaét [-A/2, A/2).
Hence, the cross-correlation between the DQE {efe2} /o2 = 2 f00'5 (1 — 6a + a?)da = 0. This result agrees with the
theory on dithered uniform scalar quantizers. As already mentioned in Section 2, Schiftshwmed that a uniform dither
in[—A/2,A/2) makes the subtractive DQE independent from the quantizer input.

The previous analysis shows that the cross-correlation between two (non-)subtractive DQE is strongly dependent on tl
statistics of the dither signal. We verified that zero cross-correlation between two quantization error signals, representir
the fingerprints in our case, can be achieved for a continuous dither uniformly distribUtedvjf2, A/2). Note that this is
impossible for any random bipolar dither sequence, since for half of the samples the quantization error correlation is one al
for the other half it cannot be lower than -0.5.

3.2. Coarse quantization

An analytic investigation of the cross-correlation between different DQEs is difficult for coarse quantization. This is due to
the dependence of the DQE on the host signal and the dither distribution, which can be neglected only for fine quantizatio
Therefore, only simulation results are briefly discussed in this subsection. We chose a synthetic host signal with Laplaciz
distribution, applied dithered guantization with two different dither sequences, and computed the cross-correlation betwee
both subtractive and non-subtractive DQEs. We investigate the case of two independently generated dither démumid?ges

and the case of dependent dither sequences, speci%a&y—d} Again, Gaussian, uniform and bipolar dither distributions

are considered. For fine quantization, the simulation results confirm the analytic results discussed in Section 3.1.

First of all, the case of two independent dither sequences is considered. We found that the resyks égi Bre almost
identical to those of Ee1 €2}, which corresponds to the same effect derived for fine quantization. The experiments showed that
the normalized cross-correlation between the subtractive DQE increases rather than decreases for coarse dithered quantiza
This effect is stronger for low-power dither signals, and agrees with intuition, which says that coarser quantization makes tt
guantized signals more similar rather than more different.



The case of two dependent dither sequences Btk —d; is particularly important since such a signaling gives best
watermark robustness when the dither is used for watermark detection. Obviously, it is difficult to design two dither sequence
leading toe; = —ey. Thus the relation betweeny andes is investigated for the case of dithering wdb = —d1 Since
E{Elﬁz} = E{elez} + E{eldz} + E{ezdl} + E{dldz}, with E{e]_dz} = E{ezdl} ~ 0 for sufficient fine quantlzation,
the cross-correlation Eeq e2 } determines also the cross-correlatiofelze, }. However, for coarse quantization the simulations
show that the cross-correlationg & d»} and E{e>d} increase and thus gives also an increasée;E;}. This indicates
again more similar DQEs for coarser quantization. The minimum measureg £ /E {612} in all our experimentsis-0.75,
which is achieved for a bipolar dither distribution and fine quantization.

4. WATERMARK DETECTION AFTER COMBINED WATERMARKING AND COMPRESSION
4.1. General Detection Principle

Communication theory tells us that maximum a posteriori (MAP) detection forms the optimal decision rule when the costs
for all possible errors are equal. When all codewords are sent with equal probability, MAP detection is equal to maximun
likelihood (ML) detection. When Gaussian channel noise is assumed, a minimum-distance decoder can be derived from tl
ML rule. This step is critical in the case of watermark detection, since the channel noise (noise introduced by an attacker) mig
be non-Gaussian. Nevertheless, minimum-distance decoding usually works quite well, even for non-Gaussian channel noi
and thus is widely used. Finally, the minimum-distance detector can be translated into a correlation detector, under some we
assumption like equal power of all possibly transmitted signals. We will use a correlation detector, as in most watermarkini
schemes. However, some modifications are introduced to improve the detection performance where possible. As describec
Section 1, the detector receives a sighat # + « + . The fingerprint detector has access to the original signahd thus

can subtract it from the received signal, which yields the pre-processed gignal— . For very strong attacks, a weighted
subtraction ofi would be betté~!* since strong attacks also remove information about the original. However, for simplicity
we neglect the weighting in this work.

Correlation detection means the decision is based on the value

—

1 al § iy,
=¥ > ynjwyln] = N~ VheK. (15)
n=1

Improved detection robustness can be gained by channel coding or the collusion-secure codes mentioned in Section 1, depe
ing on the application. Here describes not the set of all possible fingerprints, but the set of possible indices for one code
symbol. Only 2-ary signaling is considered, thiis= {0, 1}. Further, an equiprobable distribution/efs assumed. Therefore,

ML decision based on the measured correlatipfiorms the optimal detector, once we restrict ourself to use @nlyn this

case, the probability density functions (PDFs) of the hypothéke§: = 0 was sent) and{; (k = 1 was sent) describe the
detection performance. Due to the summation over several samples in (15), the shape of the @PFR9 andp. (c|H;)

can be approximated by a Gaussian distribution, which is completely determined by its mean and variance. Thus, the fo
parametergiry, = E{c|H1}, un, = E{c|H1}, o, = STD{c|Hp} andoy, = STD{c|H,} are sufficient to design and
describe the detection process.

4.2. Detection from Independent Channels

One important assumption when reducing ML decision to correlation detection is that the signal samples are I.1.D.. Howeve
this is seldom true in practical watermarking schemes. For this reason it is useful to split the host signal into independel
sub-signals, where each sub-signal is approximately I.1.D.. The watermark is embedded in each sub-signal separately. Fr
the information-transmission viewpoint, the different sub-signals can be regarded as independent sub-channels. The dete
computes the correlation (15) for each sub-channel, yieldirand finally combines these values to make the decision between
H, and H,. We discussed this approach befdréor the case of watermark detection after quantization attacks. In that
work the decision between “watermark is present” and “watermark is not present” was considered and led to the assumpti
H,,i = 0, Vi. This assumption is not valid in our present case. Without derivation, we state here the extensjgy;fer 0:

Hy : Z ciw; >t (16)
i=1

tmax

2 2
) o ) 2 _ )
with b= Z 125 zqu,z and w; = (/J/Ho,l _ liHl,z)_ 17)
i=1 i %



Here,imax denotes the number of sub-channels the decision threshold, and can be considered the weight for sub-channel
i. The assumptions are the same as in our previous work, including#hat= o, ; = 7. Whent andw; fit to the actual
sub-channel characteristics, the bit error rate can be predicted to be

?max

R 2
pe=05erfc| | Y W , (18)
i=1 i

o0
where erfdz) = % [ exp(—€?) d€. Note that the detection from sub-channels can be equivalent to the detection using

T
whitening filters, as usually applied in communications. However, the sub-channel approach is more general since it contai
also cases where, for instance, one sub-channel is the audio signal and the other the video signal of a movie. Using whiteni
filters in such a case seems to be awkward.

4.3. Exploiting Combined Fingerprinting and Compression at the Detector

In common additive watermarking scheme, is the initially embedded noise sequence, which is drawn independently from
the host signa¥. However, the additive embedding of such a sequence is incompatible with the desire for compressed doc
uments, because the successive compression step already forms the first attack on the embedded watermark. We propo:
define the non-subtractive DQE to be the watermark, thal,ig.. = €;. Note that the common additive scheme is achieved

by defining the dither signal as the watermati.qq = dj.. In the remainder of the articld, = —d; is assumed. Our main

results are similar for orthogonal ditherin@(L cfl), but omitted here due to space constraints. For the same reason, we further
restrict the discussion to bipolar dither distributions with] € {£4}.

As mentioned above, the fingerprints embedded by dithered quantization can be detected by computing the correlati
(15), using eithemwy qum OF Wi .aa. HOwever, in both cases we do not exploit the fact that many samples in both possible
public signalss; ands, are identical. LetVs..e denote the subset of all sample indiees A with si[n] = s2[n]. The
complementary set i&,:¢¢, thusAN = Moame U Naigs. All signal samples indexed b¥... contain no information about the
embedded fingerprint, so using them for the correlation measurement can only decrease the detection performance. This car
explained also by the sub-channel approach, discussed in Section 4.2. Let the samples indéxedand those indexed by
Nzane fOrm two sub-channels. Itis easy to see that_. = 0, and thus the sub-channel fdt..,. can be neglected completely.

Note that the detector, knowing the host sigfi@nd both possible subtractive D@k ande;, also knows the set§;¢: and
N:ane- Therefore, two additional detection methods are the correlation measurement over all samples indéxed bither
using the non-subtractive DQE;; qun, ., OF the dithendy, aqa n.... HENCE, We consider detection uslig, qum, A7, Wi,adad, A»
Wh,qum, Nz AN0WE aaa, M- The detection performance of all four proposed methods is compared in the next section.

5. DETECTION RESULTS FOR IMAGE FINGERPRINTS

We motivated quantization watermarking with the demand for fingerprinted and compressed images. In Section 2 and Sectior
the power of the quantization noise of dithered quantization and the cross-correlation between different dithered quantizatic
errors was analyzed for synthetic signals. Now an example image fingerprinting scheme is considered, and the performar
of the detection algorithms described in Section 4 is compared. The image fingerprinting scheme is not fully optimized. Firs
of all, the image quality after dithered quantization has not been investigated in detail. However, the resuls from Section
indicate how dithered quantization performs compared to fixed quantization. Further, the image bit rate of the fingerprinte
compressed image is not considered, which is an important factor for a practical scheme. On the other hand, we can assu
that separate fingerprinting and compression cannot achieve lower image bit rates on average, since any embedded fingery
can be considered as a kind of dither.

5.1. Description of the Experiment

We chose the popular JPEG compression schefoe the example image fingerprinting and compression scheme. In JPEG
compression, the image is transformed by8an 8 block DCT, and the DCT coefficients are quantized by uniform quantizers.

A table defines the quantizer step sizes for all 64 DCT coefficient8 peB block. The quantization table is parametrized

by a quality factor € {1,2,...,100}, where highest visual quality and lowest compression is achieve@ fer100. The
quantizer step size is equal for all DCT coefficientspr= 100 and@ = 1. In between, the quantizer step size may be
different for different DCT coefficients; for instance, at high quality factors, only high-frequency coefficients are quantized
coarsely.



We substitute the fixed quantization in the JPEG algorithm for some DCT coefficients by dithered quantization, where :
bipolar dither withd[n] € {£4'} is used. A simple but useful heuristic for the selection of DCT coefficients to be fingerprinted
is:

1. Apply JPEG compression to the original image with a quality fa€lgf,, where dithered quantization is used for all
DCT coefficients.

2. Measure the resulting mean squared error MSger DCT coefficient.

3. Apply JPEG compression to the original image with a quality fa@@f, < Qem», WhereQ i, is the minimum quality
factor achieving an acceptable image quality.

4. Measure the resulting mean squared error MSPer DCT coefficient.

5. Select those DCT coefficients for fingerprint embedding, where MSE MSE,;, was measured.

Our presented results are obtained@g, = 80 and@nin = 69, where the grayscale test image “Lenna” of st36 x 256

was used. In this case 28, most low frequency DCT coefficients were selected. The experimental results presented below
obtained from 100 differently fingerprinted copies of Lenna. In all cases, 20 bits were embedded, where the actual waterma
samples for one bit are spread over all DCT coefficients where dithered quantization is allowed.

So far, no attack has occured, since in our scheme the first compression step is combined with the fingerprint embeddir
The robustness of the embedded fingerprints is analyzed for attacks by a second JPEG compression step, using quality fac
from 10 to 100. Other possible attacks are simple additive white Gaussian noise (AWGN) attacks or the Gaussian test chanr
Moulin and O’Sullivard showed that the Gaussian test channel forms the optimal attack against watermarks in Gaussian ho:
signals. However, the DCT coefficients have a distribution that is more peaked than a Laplacian. We found experimentall
that in this case, quantization is a much stronger attack than the Gaussian test channel. Thus, we use JPEG compression ¢
attack, although we cannot show that it is the optimal attack (it is probably not). Watermark detection after quantization attack
has already been investigated-®> The watermark robustness after JPEG compression is quite different for DCT coefficients
of different frequency, such that a multi-channel approach, as described in Section 4.2, should be used, where each coeffici
forms one sub-channel. Thus, up to 64 sub-channels can exist. However, not all of them may contain a watermark due
the constraint on the embedding distortion. For the given image size, 1024 DCT coefficients of each frequency exists. Thu
for such a sub-channel, each of the 20 watermark bits is embedded into roughly 50 coefficients. We consider only detectic
where the detector defined in (16) is optimized for the given attack. Although this might not possible in practical fingerprinting
schemes, it gives us an upper bound on the performance of the considered detection methods.

5.2. Correlation Measurements

First of all, the distribution of the measured correlation values is investigated for one example. Since 20 watermark bits at
embedded in 100 different simulations, 2000 correlation values are measured for each attack and each DCT-sub-channel. Fi
depicts the measured PDps(c) for both hypotheses, where the attack was JPEG compression with qality. = 50.

The presented correlations are measured for the 19th DCT coefficient in zigzag scan. All plots show that the assumption of
Gaussian PDF fot is at least roughly correct. The results shown in the upper plots of Fig. 6, were obtained when all watermark
samples (indexed hy) are used for the correlation. When detectit\ga A, the ratious, /umr, = —1 was measured and the
standard deviationsy, andoy, are equal. An error rate gf, = 0.126 was predicted. For the detection@fm -, the ratio

ww, /we, = —0.71 was measured. The unequal means are also visible in the upper right plot of Fig. 6. Due to the differencesi
the variances of both hypotheses, different detection errorpates= 0.063 andp. z, = 0.077 are predicted. This example
shows that detectingqum A instead ofi.aq, v l€ads to better detection performance. On the other hand, the higher symmetry
of the PDFsp. (c¢) when detectingi.aa, o Might lead to more robust detection in practice. The main advantage of detecting
Waaa, N iINStead ofigm, A IS that the thresholtican be set to zero, which simplifies a practical scheme.

The lower plots in Fig. 6 depict the correlation results when only selected watermark samples, namely those indexed b
Naise, were used. We observe that for detection wiithn, x,,,, both detection cases become more symmetric. Now, the ratio
W, [, 1s roughly—1, and the detection error rates decreage tg, = 0.053 andp. #, = 0.059. However, the improvement
due to sample selection is much larger when detealing v,.... Here, the high symmetry betweéfy and H, remains, and
the detection error rate decreasepdo= 0.045. Thus, for the presented example, detection based on the dither salinjles
indexed byVy; ¢+ gives the lowest bit error rate. In the next subsection, we show that this result is consistent for other differently
strong attacks and different DCT coefficients.
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Figure 6. PDFs of the detected correlation value after an attack by coarse quantization; (left) detect dither; (right) detec
non-subtractive DQE

5.3. Detection Error Probabilities

We compare the detection error probabilities for all considered correlation measurements for different attacks and differel
DCT coefficient. Fig. 7 depicts predicted and measured detection error probabilites, where a linear scale is used in the upy
plots and a logarithmic scale is used in the lower plots. The left plots are for detection from the 5th DCT coefficient only,
and the right plots show results obtained by combined detection from the DCT coefficients 5, 8 and 9. It is clearly visible ir
the upper plots that for strong attacks, detection with all dither samglgs A7) is less robust than the three other methods
(Waem, A7+ Waem, Naser » Wadd, Nasee )- FUIther, we observe that the measured and predicted error rates closely agree. It is also evider
that adding information by combining the results from sub-channels 5, 8 and 9 increases the detection performance for all fo
correlation methods.

The lower plots, with the logarithmic scale, reveal the different performance of the four considered correlation methods
Detection with samples aff.q4q in NVyi¢¢ gives the lowest bit error rate for all attacks. In addition, the detection performance
when using three sub-channels instead of one improves considerably. The measured detection error rates fit not very accura
to the predicted values at low bit error rates. However, this effect occurs because of the limited number of experiments. Tt
minimum measurable detection rateis10~* for our experiments.

6. CONCLUSIONS

We propose to combine fingerprinting and compression by dithered quantization to achieve improved fingerprint detectiol
Therefore, uniform scalar dithered quantization is briefly reviewed in Section 2, and the effect of dithered quantization on th
power of the quantization noise is analyzed theoretically. In Section 3, the cross-correlation between two different quantizatic
errors is investigated analytically for fine quantization. For coarse quantization simulation results are discussed. In Section
we propose four methods for the fingerprint detection, which differ in the correlation measurement. The first two method
are correlation detection using the entire dither sequence or the entire non-subtractive DQE. In the other two methods t
correlation with the dither sequence or the non-subtractive DQE is measured after selecting the signal samples for which t
public signalss, ands; are not identical. The four detection methods are compared for an experimental image fingerprinting
scheme. Correlating the entire received signal with the entire dither signal, which is equivalent to additive watermarkin
followed by quantization, performs worst. Instead, detecting the whole non-subtractive DQE gives significantly lower bit errol
rates. However, this scheme might lead to problems in practice, due to asymmetry of the measured correlation values. Fina
the best performance was achieved by correlating only the selected samples of the received signal with the correspondi
dither samples. Thus, the knowledge about the applied dithered quantization can be exploited best by simply neglecting in tl
detection process all those signal samples where the public signals are identical due to quantization.
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